Please wait a minute...
金属学报  2013, Vol. 49 Issue (5): 530-536    DOI: 10.3724/SP.J.1037.2013.00007
  论文 本期目录 | 过刊浏览 |
hcp-Ti中辐照诱发缺陷演化及温度效应的分子动力学研究
姚曼1),高晓1),曾维鹏1),王旭东1),徐海譞2),Simon R. Phillpot3)
1) 大连理工大学材料科学与工程学院, 大连 116024
2) Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA
3) Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
MOLECULAR DYNAMICS STUDY ON TEMPERATURE EFFECT AND RADIATION-DEDUCED DEFECT FORMATION IN hcp-Ti
YAO Man1), GAO Xiao1), ZENG Weipeng1), WANG Xudong1), XU Haixuan2), Simon R. Phillpot3)
1) School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024
2) Materials Science and Technology Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA
3) Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611, USA
引用本文:

姚曼,高晓,曾维鹏,王旭东,徐海譞,Simon R. Phillpot. hcp-Ti中辐照诱发缺陷演化及温度效应的分子动力学研究[J]. 金属学报, 2013, 49(5): 530-536.
YAO Man, GAO Xiao, ZENG Weipeng, WANG Xudong, XU Haixuan, Simon R. Phillpot. MOLECULAR DYNAMICS STUDY ON TEMPERATURE EFFECT AND RADIATION-DEDUCED DEFECT FORMATION IN hcp-Ti[J]. Acta Metall Sin, 2013, 49(5): 530-536.

全文: PDF(1858 KB)  
摘要: 

运用分子动力学方法研究了hcp-Ti中的级联碰撞. 建立晶体结构模型, 选取不同的初级碰撞原子方向和能量, 分别研究了级联碰撞中所产生的点缺陷的演化情况, 给出初始物理图景. 对级联碰撞中的两大特征分布“离位峰”及“热峰”进行分析, 定量讨论了损伤区瞬态温度分布, 局部“熔化区域”的变化, 辐照诱发峰值缺陷数和稳定缺陷数等, 为分析材料辐照损伤行为提供了数据. 本工作中运用的计算方法可作为研究材料辐照诱发缺陷形成微观机制的一个有效手段.

关键词 hcp-Ti级联碰撞分子动力学辐照诱发缺陷温度    
Abstract

The radiation-induced defects formed in nuclear structure materials in the initial stage of displacement cascade and the subsequent changes in their microstructures and mechanical properties are the primary causes of their failure. Unfortunately the formation and aggregation of point defects are hard to be found only by probed experiments. In this work, the displacement cascade occurring in hcp-Ti system has been investigated by using molecular dynamics. After building the atomic model, by setting different PKA (primary knock-on atom) directions and PKA energies respectively, the evolution of simulated radiation-induced point defects in displacement cascade was studied and its two major characteristics, displacement and thermal spikes, have been given. The transient temperature distribution, local “melting region” variation in the damage zone caused by radiation as well as the peak and surviving numbers of Frenkel pairs were quantitatively estimated. For hcp-Ti, in the PKA energy region of 0.5-9.0 keV, the effect of PKA velocity direction on survival defect number is very small. Both the defect number at stable state and its maximum value have approximately linear relationship with the PKA energy.In the radiation evolution stage, the defects about 95 percent have recovered, the defect and temperature distribution caused by displacement cascade are asymmetric. The simulation method used in this paper would provide an effective way for the study on the evolution and micromechanism of radiation-induced point defects in displacement cascade.

Key wordshcp-Ti    displacement cascade    molecular dynamics    radiation-induced defect    temperature
收稿日期: 2013-01-05     
基金资助:

国家自然科学基金项目51004012和21233010, 以及美国能源部项目(部分) DE-AC05-00OR22725资助

作者简介: 姚曼, 女, 1962年生, 教授, 博士

[1] Wirth B D.  Science, 2007; 318: 92


[2] Matsukawa Y, Zinkle S J.  Science, 2007; 318: 959

[3] Tomas D R, Zbib H M, Khraishi T A, Wirth B D, Victoria M, Caturla M J.  Nature, 2000; 406: 871

[4] Odette G R, Alinger M J, Wirth B D.  Annu Rev Mater Res, 2008; 38: 471

[5] Sickafus K E, Grimes R W, Valdez J A, Cleave A, Tang M, Iahimaru M, Corish S, Stanek C R, Uberuaga B P.Nat Mater, 2007; 6: 217

[6] He X F, Yang W, Fan S.  Acta Phy Sin, 2009; 58: 8657

(贺新福, 杨文, 樊胜. 物理学报, 2009; 58: 8657)

[7] Domain C, Becquart C S.  Phys Rev, 2001; 65B: 02410

[8] Gameza L, Martinez E, Perlado J M, Cepas P, Caturla M J, Victoria M, Marian J, Arevalo C, Hernandez M, Gomez D.Fusion Eng Des, 2007; 82: 2666

[9] Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P.  Science, 2010; 327: 1631

[10] He B, Xue J M, Zou X Q, Wang Y G.  Acta Sci Nat Univ Pekin, 2009; 45: 385

(何斌, 薛建明, 邹雪晴, 王宇钢. 北京大学学报, 2009; 45: 385)

[11] Jin Z M, Chen Y X, Han J R, Lu D G.  Atomic Energy Sci Technol, 2009; 43: 501

(靳忠敏, 陈义学, 韩静茹, 陆道纲. 原子能科学技术, 2009; 43: 501)

[12] Bacon D J, Osetsky Y N, Stoller R, Voskoboinikov R E.  J Nucl Mater, 2003; 323: 152

[13] Xu H X.  From Electronic Structure of Point Defects to Physical Properties of Complex Materials Using Atomic-level Simulations. Gainesville: University of Florida, 2010: 148

[14] Wooding S J, Bacon J.  Philos Mag, 1995; 72A: 1261

[15] Liu J Z.  Nuclear Structural Materials. Beijing: Chemical Industry Press, 2007: 19

(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)

[16] Kim Y M, Lee B J, Baskes M I.  Phys Rev, 2006; 74B: 014101

[17] Baskes M I, Johnson R A.  Modelling Simul Mater Sci Eng, 1994; 2: 147

[18] Min S Y, KimY, Lee T K, Seo S, Jung H S, Kim D, Lee J, Lee B J.  Mater Int, 2010; 16: 421

[19] Biersack J P, Ziegler J F.  Nucl Instrum Methods Phys Res, 1982; 194: 93

[20] Yu J N.  Materials Radiation Effect. Beijing: Chemical Industry Press, 2007: 127

(郁金南. 材料辐照效应. 北京: 化学工业出版社, 2007: 127)

[21] Tsuchihira H, Oda T, Tanaka S.  J Nucl Mater, 2011; 414: 44

[22] Gao F, Bacon D J, Howe L M, So C B.  J Nucl Mater, 2001; 294: 288

[23] Norgett M J, Robinson M T, Torrens I M.  Nucl Eng Des, 1975; 33: 50

[24] Samaras M, Derlet P M, Swygenhoven H V, Victoria M.  Phys Rev Lett, 2002; 88: 12

[25] Psakhie S G, Zolnikov K P, Kryzhevich D S, Zheleznyakov A V, Chernov V M.  Phys Mesomech, 2009; 12: 20
[1] 江河, 佴启亮, 徐超, 赵晓, 姚志浩, 董建新. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[3] 王迪, 贺莉丽, 王栋, 王莉, 张思倩, 董加胜, 陈立佳, 张健. Pt-Al涂层对DD413合金高温拉伸性能的影响[J]. 金属学报, 2023, 59(3): 424-434.
[4] 程远遥, 赵刚, 许德明, 毛新平, 李光强. 奥氏体化温度对Si-Mn钢热轧板淬火-配分处理后显微组织和力学性能的影响[J]. 金属学报, 2023, 59(3): 413-423.
[5] 陈继林, 冯光宏, 马洪磊, 杨栋, 刘维. Cr-Mo微合金冷镦钢的显微组织、力学性能及强化机制[J]. 金属学报, 2022, 58(9): 1189-1198.
[6] 李海勇, 李赛毅. Al <111>对称倾斜晶界迁移行为温度相关性的分子动力学研究[J]. 金属学报, 2022, 58(2): 250-256.
[7] 陈维, 陈洪灿, 王晨充, 徐伟, 罗群, 李谦, 周国治. Fe-C-Ni体系膨胀应变能对马氏体转变的影响[J]. 金属学报, 2022, 58(2): 175-183.
[8] 周成, 赵坦, 叶其斌, 田勇, 王昭东, 高秀华. 回火温度对1000 MPaNiCrMoV低碳合金钢微观组织和低温韧性的影响[J]. 金属学报, 2022, 58(12): 1557-1569.
[9] 王玉, 胡斌, 刘星毅, 张浩, 张灏云, 官志强, 罗海文. 退火温度对含Nb高锰钢力学和阻尼性能的影响[J]. 金属学报, 2021, 57(12): 1588-1594.
[10] 梁晋洁, 高宁, 李玉红. 体心立方Fe中微裂纹与间隙型位错环相互作用的分子动力学模拟[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] 李美霖, 李赛毅. 金属Mg二阶锥面<c+a>刃位错运动特性的分子动力学模拟[J]. 金属学报, 2020, 56(5): 795-800.
[12] 李源才, 江五贵, 周宇. 温度对碳纳米管增强纳米蜂窝镍力学性能的影响[J]. 金属学报, 2020, 56(5): 785-794.
[13] 李源才, 江五贵, 周宇. 纳米孔洞对单晶/多晶Ni复合体拉伸性能的影响[J]. 金属学报, 2020, 56(5): 776-784.
[14] 刘正东,陈正宗,何西扣,包汉生. 630~700 ℃超超临界燃煤电站耐热管及其制造技术进展[J]. 金属学报, 2020, 56(4): 539-548.
[15] 周霞,刘霄霞. 石墨烯纳米片增强镁基复合材料力学性能及增强机制[J]. 金属学报, 2020, 56(2): 240-248.