Please wait a minute...
金属学报  2012, Vol. 48 Issue (12): 1467-1473    DOI: 10.3724/SP.J.1037.2012.00433
  论文 本期目录 | 过刊浏览 |
不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为
胡桥1,林鑫1,杨高林1,黄卫东1,李金富2
1.西北工业大学凝固技术国家重点实验室, 西安 710072
2.上海交通大学材料科学与工程学院, 上海 200240
CRYSTALLIZATION BEHAVIOR OF Zr55Al10Ni5Cu30 AMORPHOUS ALLOYS WITH DIFFERENT MORPHOLOGIES AND THERMAL HISTORY CONDITIONS
HU Qiao1, LIN Xin1, YANG Gaolin1, HUANG Weidong1,LI Jinfu2
1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
2.School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240
引用本文:

胡桥 林鑫 杨高林 黄卫东 李金富. 不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为[J]. 金属学报, 2012, 48(12): 1467-1473.
HU Qiao LIN Xin YANG Gaolin ANG Weidong LI Jinfu. CRYSTALLIZATION BEHAVIOR OF Zr55Al10Ni5Cu30 AMORPHOUS ALLOYS WITH DIFFERENT MORPHOLOGIES AND THERMAL HISTORY CONDITIONS[J]. Acta Metall Sin, 2012, 48(12): 1467-1473.

全文: PDF(2129 KB)  
摘要: 

研究了不同形态Zr55Al10Ni5Cu30非晶合金(块体和粉末)在不同升温和冷却条件下的晶化行为.发现Zr55Al10Ni5Cu30在不同热历史下的晶化行为有较大差别. 对于块体非晶合金, 在常规热处理条件下, 合金的升温和冷却速率较低, Zr55Al10Ni5Cu30块体非晶合金在初始晶化温度Tx以上开始晶化, 形成CuZr2纳米晶. 随着热处理温度的升高, 晶粒尺寸增大, 当热处理最终温度超过熔点后, 合金在随炉冷却过程中形成了粗大的CuZr2板条+板条间(CuZr2)+(Zr, Cu, Al, Ni)共晶组织; 在激光熔凝条件下, 合金的升温和冷却速率较高, Zr55Al10Ni5Cu30块体非晶合金随单点熔凝次数的增加, 晶化效应逐渐累加, 热影响区中逐渐出现微米级球晶的弥散析出, 并长大, 随后失稳形成沿熔池边界带状分布,尺寸可达几百微米的等轴晶. 对于粉末非晶合金, 由于Zr55Al10Ni5Cu30非晶粉末的冷却强度不如块体非晶, 冷却速率较块体低, 造成粉末颗粒在激光熔凝过程中晶化为微米级的等轴枝晶, 并随着激光能量的升高, 等轴枝晶尺寸增大.

关键词 非晶合金 热历史 热处理 激光 晶化    
Abstract

This work investigated the crystallization behavior of Zr55Al10Ni5Cu30  amorphous alloy (bulk and powder with different morphologies) under different heating and cooling rate conditions, and has found that the crystallization behavior of Zr55Al10Ni5Cu30  under different thermal history conditions was quite different. Under conventional heat treatment condition, the heating and cooling rates of the alloy were lower, the Zr55Al10Ni5Cu30  bulk amorphous alloy began to crystallization above the outset crystallization temperature Tx, the CuZr2 nanocrystalline was formed. With increasing temperature, its grain size became bigger, when exceeding the melting point, the thick CuZr2 lath+eutectic organizations of lath (CuZr2)+(Zr, Cu, Al, Ni) were formed under furnace cooling condition; under laser melting condition, however, the heating and cooling rates of alloy were higher, with increasing number of pulse frequency, the crystallization effect of Zr55Al10Ni5Cu30  bulk amorphous alloy accumulated gradually, in heat affected zone spherulites were precipitated and grew up, subsequently became unstable and finally a belt of equiax crystals were formed along the weld pool boundary. For amorphous alloy powder, due to its poorer the cooling performance than bulk amorphous, the cooling rate was lower, causing the powder particles crystallized into equiaxed dendrite during laser melting process, and with increasing laser energy, the equiaxed dendrite size increased.

Key wordsamorphous alloy    thermal history    heat treatment    laser    crystallization
收稿日期: 2012-07-19     
ZTFLH:  TG24  
基金资助:

国家自然科学基金项目50971102和50901061,国家重点基础研究发展计划项目2011CB610402资助

作者简介: 胡桥, 男, 1989年生, 硕士生

[1] Byrne C J, Eldrup M. Science, 2008; 321: 502

[2] Wang W H, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45

[3] Conner R D, Dandliker R B, Scruggs V, Johnson W L. Int J Impact Eng, 2000; 24: 435

[4] Posan E, Ujj G, Kiss A, Telek B, Rak K, Udvardy M, Inoue A. Prog Mater Sci, 1998; 43: 365

[5] Xia X X, Wang Y T, Wang W H. Physics, 2008; 37: 98

[6] Zhang Z F, Eckert J, Schultz L. Acta Mater, 2003; 51: 1167

[7] Huang R, Suo Z, Prevost J H, Nix W D. J Mech Phys Solids, 2002; 50: 1011

[8] Wu F F, Zhang Z F, Peker A, Mao S X, Das J, Eckert J. J Mater Res, 2006; 21: 2331

[9] Wu F F, Zhang Z F, Mao S X, Peker A, Eckert J. Phys Rev, 2007; B75: 134201

[10] Loser W, Das J, G¨uth A, Klau H J, Mickel C, Kuhn U, Eckert J, Roy S K, Schultz L. Intermetallics, 2004; 12: 1153

[11] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085

[12] Schroers J, Johnson W L. J Appl Phys, 2000; 88: 44

[13] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1998; 64: 6044

[14] Lu K, Wang J T, Wei W D. J Appl Phys, 1991; 69: 522

[15] Yavari A R, Uriarte J L, Tousimi K, Moulec L A, Botta F W J, Kim K B, Rejmankova P, Kvick °A. J Metall Nano Mater, 1999; 307: 17

[16] Zhong M L, Liu W J, Yao K F, Ren J L, Hu S Q, Zhao H. Acta Metall Sin, 1997; 33: 413

(钟敏霖, 刘文今, 姚可夫, 任家烈, 胡姝嫱, 赵宏. 金属学报, 1997; 33: 413)

[17] Yoshioka H, Asami K, Kawashima A, Hashimoto K. Corros Sci, 1987; 27: 981

[18] Kawahito Y, Tersjima T, Kimura H, Kuroda T, Nakata K, Katayama S, Inoue A. Mater Sci Eng, 2008; B148: 105

[19] Lin X H, JohnsoWL, RhimWK. Mater Trans JIM, 1997; 38: 473

[20] Zhang H Y, Lu K, Hu Z Q. J Phys, 1995; 7: 5327

[21] Cao Q P, Li J F, Zhou Y H, Jiang Z. Appl Phys Lett, 2005; 86: 081913

[22] Tam C Y, Shek C H. Mater Sci Eng, 2004; A364: 198

[23] Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Huang W D. Intermetallics, 2012; 22: 110

[24] Schroers J, Wu Y, Busch R, Johnson W L. Acta Mater, 2001; 49: 2773

[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 侯娟, 代斌斌, 闵师领, 刘慧, 蒋梦蕾, 杨帆. 尺寸设计对选区激光熔化304L不锈钢显微组织与性能的影响[J]. 金属学报, 2023, 59(5): 623-635.
[4] 唐伟能, 莫宁, 侯娟. 增材制造镁合金技术现状与研究进展[J]. 金属学报, 2023, 59(2): 205-225.
[5] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[6] 杨累, 赵帆, 姜磊, 谢建新. 机器学习辅助2000 MPa级弹簧钢成分和热处理工艺开发[J]. 金属学报, 2023, 59(11): 1499-1512.
[7] 戚钊, 王斌, 张鹏, 刘睿, 张振军, 张哲峰. 应力比对含缺陷选区激光熔化TC4合金稳态疲劳裂纹扩展速率的影响[J]. 金属学报, 2023, 59(10): 1411-1418.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 王孟, 杨永强, Trofimov Vyacheslav, 宋长辉, 周瀚翔, 王迪. 粉末粒径对AlSi10Mg合金选区激光熔化成形的影响[J]. 金属学报, 2023, 59(1): 147-156.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 祝国梁, 孔德成, 周文哲, 贺戬, 董安平, 疏达, 孙宝德. 选区激光熔化 γ' 相强化镍基高温合金裂纹形成机理与抗裂纹设计研究进展[J]. 金属学报, 2023, 59(1): 16-30.
[12] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[13] 宋波, 张金良, 章媛洁, 胡凯, 方儒轩, 姜鑫, 张莘茹, 吴祖胜, 史玉升. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1): 1-15.
[14] 方远志, 戴国庆, 郭艳华, 孙中刚, 刘红兵, 袁秦峰. 激光摆动对激光熔化沉积钛合金微观组织及力学性能的影响[J]. 金属学报, 2023, 59(1): 136-146.
[15] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.