Please wait a minute...
金属学报  2012, Vol. 48 Issue (2): 220-226    DOI: 10.3724/SP.J.1037.2011.00594
  论文 本期目录 | 过刊浏览 |
激光悬浮区熔定向凝固Al2O3/YAG/ZrO2 三元过共晶合金的微观组织
宋衎,张军,贾晓娇,苏海军,刘林,傅恒志
西北工业大学凝固技术国家重点实验室, 西安 710072
MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD
SONG Kan, ZHANG Jun, JIA Xiaojiao, SU Haijun, LIU Lin, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
引用本文:

宋衎 张军 贾晓娇 苏海军 刘林 傅恒志. 激光悬浮区熔定向凝固Al2O3/YAG/ZrO2 三元过共晶合金的微观组织[J]. 金属学报, 2012, 48(2): 220-226.
, , , , , . MICROSTRUCTURE OF Al2O3/YAG/ZrO2 HYPEREUTECTIC ALLOY DIRECTIONALLY SOLIDIFIED BY LASER FLOATING ZONE METHOD[J]. Acta Metall Sin, 2012, 48(2): 220-226.

全文: PDF(1059 KB)  
摘要: 利用自行研制的激光悬浮区熔设备制备了Al2O3/YAG/ZrO2 三元过共晶自生复合材料. 在过共晶成分下获得了不含初生相的全共晶层片状组织.详细分析了固/液界面形貌形成原因, 并由界面形貌出发阐述了Al2O3/YAG/ZrO2 三元过共晶组织织构化趋势.结果表明, 低凝固速率下, 三元过共晶成分下层片间距大于三元共晶成分下层片间距,而在高凝固速率下则相反, 这主要是由于ZrO2的加入影响了体系的传热及传质条件, 通过经典非规则共晶模型综合分析了传输条件对层片间距的影响.过共晶平均层片间距(λav)与凝固速率(V)满足λavV0.5=14.7 μm1.5s-0.5,符合JH模型. 对于激光加工中经常出现的带状组织形成机理也进行了讨论.
关键词 Al2O3/YAG/ZrO2  过共晶 固/液界面 组织    
Abstract:Due to the excellent high temperature mechanical properties, Al2O3/YAG/ZrO2 ternary eutectic in situ composite is considered to be a promising candidate for the material, replacement for nickel based superalloy, of new generation aero space engine turbine blade. The directionally solidified Al2O3/YAG/ZrO2 hypereutectic ceramics are prepared with recently developed laser floating zone melting (LFZM) apparatus. Full eutectic lamellar microstructure, free of primary phase, was obtained with hypereutectic composition. The formation of solid/liquid interface morphology was analyzed in detail. The microstructure texture tendency was explained by combination with interface morphology. The experimental result indicates that, just as the prediction of JH model, average spacing of hypereutectic (λav) agrees with the inverse–square–root dependence on solidification rate (V ) according to λavV 0.5=14.7 μm1.5·s−0.5. In lower solidification rate, the lamellar spacing of hypereutectic is higher than that of eutectic composition, but the situation reverses in higher rate. The main reason of such phenomenon is that the addition of ZrO2 effects the thermal and solute transformation in the melt. The influence of transformation condition on lamellar spacing was analyzed synthetically by using classical irregular growth model. The formation mechanism of banded microstructure, often observed in laser zone melted solidification processing, was also discussed.
Key wordsAl2O3/YAG/ZrO2    hypereutectic    solid/liquid interface    microstructure
收稿日期: 2011-09-20     
基金资助:

国家自然科学基金项目51002122和50772090, 陕西省自然科学基金项目2010JQ6005,航空科学基金项目2010ZF53064, 西北工业大学基础研究基金项目G9KY1016, 西北工业大学材料学院“新人新方向”基金项目09XE0104-5, 凝固技术国家重点实验室自主课题项目76-QP-2011和高等学校学科创新引智计划项目B08040资助

作者简介: 宋kan, 男, 1982年生, 博士生
[1] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. Nature, 1997; 389: 49

[2] Waku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. J Mater Sci, 1998: 1217

[3] Su H J, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 457

(苏海军, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 457)

[4] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. Mater Sci Eng, 2008; A479: 380

[5] Fritsch M, Klemm H. J Eur Ceram Soc, 2008; 28: 2353

[6] Fritsch M, Klemm H, Herrmann M, Schenk B. J Eur Ceram Soc, 2006; 26: 3557

[7] Ochiai S, Ueda T, Sato K, Hojo M, Waku Y, Nakagawa N, Sakata S, Mitani A, Takahashi T. Compos Sci Technol, 2001; 61: 2117

[8] Lee J H, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon D H, Waku Y. J Cryst Growth, 2001; 231: 179

[9] Larrea A, Orera V M, Merino R I, Pe˜na J I. J Eur Ceram Soc, 2005; 25: 1419

[10] Oliete P B, Pe˜na J I, Larrea A, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. Adv Mater, 2007; 19: 2313

[11] Calderon–Moreno J M, Yoshimura M. J Eur Ceram Soc, 2005; 25: 1365

[12] Pe˜na J I, Larsson M, Merino R I, Francisco I D, Orera V M, Llorca J, Pastor J Y, Mart´?n A, Segurado J. J Eur Ceram Soc, 2006; 26: 3113

[13] Su H J, Zhang J, Cui C J, Liu L, Fu H Z. J Cryst Growth, 2007; 307: 448

[14] Ester F J, Larrea A, Merino R I. J Eur Ceram Soc, 2011; 31: 1257

[15] Kurz W, Fisher D J. Int Met Rev, 1979; (5–6): 177

[16] Lakiza S M, Lopato L M. J Am Ceram Soc, 1997; 80: 893

[17] Echigoya J, Takabayashi Y, Sasaki K. Trans Jpn Inst Met, 1986; 27: 102

[18] Jackson K A, Hunt J D. Aime Met Soc Trans, 1966; 236: 1129

[19] Llorca J, Orera V M. Prog Mater Sci, 2006; 51: 711

[20] Flood S C, Hunt J D. J Mater Sci, 1981; 15: 287

[21] Merino R I, Pe N A J I, Larrea A, de la Fuente G F, Orera V M. Recent Res Devel Mater Sci, 2003; 4: 1

[22] Golubovi´c A, Nikoli´c S, Gaji´c R, Duri´c S, Valˇci´c A. J Serb Chem Soc, 2005; 70: 87

[23] Calderon–Moreno J M, Yoshimura M. Mater Sci Eng, 2004; A375–377: 1250

[24] Magnin P, Kurz W. Acta Metall, 1987; 35: 1119

[25] Liu L, Huang T, Qu M, Liu G, Zhang J, Fu H. J Mater Process Technol, 2010; 210: 159

[26] Oliete P B, Pe˜na J I. J Cryst Growth, 2007; 304: 514

[27] Sola D, Ester F J, Oliete P B, Pe˜na J I. J Eur Ceram Soc, 2011; 31: 1211

[28] Saitou M. J Appl Phys, 1997; 12: 6343

[29] Uhlmann D R, Chalmers B, Jackson K A. J Appl Phys, 1964; 10: 2986

[30] Winegard W C, Majka S, Thall B M, Chalmers B. Can J Chem, 1951; 29: 320
[1] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] 王磊, 刘梦雅, 刘杨, 宋秀, 孟凡强. 镍基高温合金表面冲击强化机制及应用研究进展[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] 张雷雷, 陈晶阳, 汤鑫, 肖程波, 张明军, 杨卿. K439B铸造高温合金800℃长期时效组织与性能演变[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] 卢楠楠, 郭以沫, 杨树林, 梁静静, 周亦胄, 孙晓峰, 李金国. 激光增材修复单晶高温合金的热裂纹形成机制[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] 宫声凯, 刘原, 耿粒伦, 茹毅, 赵文月, 裴延玲, 李树索. 涂层/高温合金界面行为及调控研究进展[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] 陈礼清, 李兴, 赵阳, 王帅, 冯阳. 结构功能一体化高锰减振钢研究发展概况[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] 刘兴军, 魏振帮, 卢勇, 韩佳甲, 施荣沛, 王翠萍. 新型钴基与Nb-Si基高温合金扩散动力学研究进展[J]. 金属学报, 2023, 59(8): 969-985.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 孙蓉蓉, 姚美意, 王皓瑜, 张文怀, 胡丽娟, 仇云龙, 林晓冬, 谢耀平, 杨健, 董建新, 成国光. Fe22Cr5Al3Mo-xY合金在模拟LOCA下的高温蒸汽氧化行为[J]. 金属学报, 2023, 59(7): 915-925.
[10] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[11] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[12] 郭福, 杜逸晖, 籍晓亮, 王乙舒. 微电子互连用锡基合金及复合钎料热-机械可靠性研究进展[J]. 金属学报, 2023, 59(6): 744-756.
[13] 吴东江, 刘德华, 张子傲, 张逸伦, 牛方勇, 马广义. 电弧增材制造2024铝合金的微观组织与力学性能[J]. 金属学报, 2023, 59(6): 767-776.
[14] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[15] 王长胜, 付华栋, 张洪涛, 谢建新. 冷轧变形对高性能Cu-Ni-Si合金组织性能与析出行为的影响[J]. 金属学报, 2023, 59(5): 585-598.