|
|
基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为 |
吴正凯1,吴圣川1( ),张杰2,宋哲1,胡雅楠1,康国政1,张海鸥3 |
1. 西南交通大学牵引动力国家重点实验室 成都 610031 2. 中国航空制造技术研究院 北京 100024 3. 华中科技大学数字制造装备与技术国家重点实验室 武汉 430074 |
|
Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography |
Zhengkai WU1,Shengchuan WU1( ),Jie ZHANG2,Zhe SONG1,Yanan HU1,Guozheng KANG1,Haiou ZHANG3 |
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China 2. AVIC Manufacturing Technology Institute, Beijing 100024, China 3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China |
引用本文:
吴正凯, 吴圣川, 张杰, 宋哲, 胡雅楠, 康国政, 张海鸥. 基于同步辐射X射线成像的选区激光熔化Ti-6Al-4V合金缺陷致疲劳行为[J]. 金属学报, 2019, 55(7): 811-820.
Zhengkai WU,
Shengchuan WU,
Jie ZHANG,
Zhe SONG,
Yanan HU,
Guozheng KANG,
Haiou ZHANG.
Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. Acta Metall Sin, 2019, 55(7): 811-820.
[1] | Wang H M . Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690 | [1] | (王华明 . 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690) | [2] | Boyer R R . An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103 | [3] | Liang Z Y , Zhang A F , Liang S D , et al . Research developments of high-performance titanium alloy by laser additive manufacturing technology [J]. Appl. Laser, 2017, 37: 452 | [3] | (梁朝阳, 张安峰, 梁少端 等 . 高性能钛合金激光增材制造技术的研究进展 [J]. 应用激光, 2017, 37: 452) | [4] | Zhou M , Cheng Y , Zhou X C , et al . Biomedical titanium implants based on additive manufacture [J]. Sci. Sin. (Technol.), 2016, 46: 1097 | [4] | (周 梦, 成 艳, 周晓晨 等 . 基于增材制造技术的钛合金医用植入物 [J]. 中国科学: 技术科学, 2016, 46: 1097) | [5] | Gao P , Wei K W , Yu H C , et al . Influence of layer thickness on microstructure and mechanical properties of selective laser melted Ti-5Al-2.5Sn alloy [J]. Acta Metall. Sin., 2018, 54: 999 | [5] | (高 飘, 魏恺文, 喻寒琛 等 . 分层厚度对选区激光熔化成形Ti-5Al-2.5Sn合金组织与性能的影响规律 [J]. 金属学报, 2018, 54: 999) | [6] | Zhang S , Gui R Z , Wei Q S , et al . Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting [J]. J. Mech. Eng., 2013, 49(23): 21 | [6] | (张 升, 桂睿智, 魏青松 等 . 选择性激光熔化成形TC4钛合金开裂行为及其机理研究 [J]. 机械工程学报, 2013, 49(23): 21) | [7] | Xi M Z , Lv C , Wu Z H , et al . Microstructures and mechanical properties of TC11 titanium alloy formed by laser rapid forming and its combination with consecutive point-mode forging [J]. Acta Metall. Sin., 2017, 53: 1065 | [7] | (席明哲, 吕 超, 吴贞号 等 . 连续点式锻压激光快速成形TC11钛合金的组织和力学性能 [J]. 金属学报, 2017, 53: 1065) | [8] | Yadollahi A , Shamsaei N . Additive manufacturing of fatigue resistant materials: Challenges and opportunities [J]. Int. J. Fatigue, 2017, 98: 14 | [9] | Gorelik M . Additive manufacturing in the context of structural integrity [J]. Int. J. Fatigue, 2017, 94: 168 | [10] | Ren Y M , Lin X , Huang W D . Research progress of microstructure and fatigue behavior in additive manufacturing Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46: 3160 | [10] | (任永明, 林 鑫, 黄卫东 . 增材制造Ti-6Al-4V合金组织及疲劳性能研究进展 [J]. 稀有金属材料与工程, 2017, 46: 3160) | [11] | Leuders S , Th?ne M , Riemer A , et al . On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance [J]. Int. J. Fatigue, 2013, 48: 300 | [12] | Murakami Y . Material defects as the basis of fatigue design [J]. Int. J. Fatigue, 2012, 41: 2 | [13] | Wan Z P , Wang C , Jiang W T , et al . On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing [J]. J. Exp. Mech., 2017, 32: 1 | [13] | (万志鹏, 王 宠, 蒋文涛 等 . 孔洞缺陷对3D打印Ti-6Al-4V合金疲劳试样应力分布的影响 [J]. 实验力学, 2017, 32: 1) | [14] | Tammas-Williams S , Withers P J , Todd I , et al . The influence of porosity on fatigue crack initiation in additively manufactured titanium components [J]. Sci. Rep., 2017, 7: 7308 | [15] | Beretta S , Romano S . A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes [J]. Int. J. Fatigue, 2017, 94: 178 | [16] | Wu S C , Xiao T Q , Withers P J . The imaging of failure in structural materials by synchrotron radiation X-ray microtomography [J]. Eng. Fract. Mech., 2017, 182: 127 | [17] | Wu S C , Hu Y N , Fu Y N , et al . Study on fatigue cracking of welded aluminum alloys via in situ synchrotron radiation X-ray microtomography [J]. Trans. China Weld. Inst., 2015, 36(12): 5 | [17] | (吴圣川, 胡雅楠, 付亚楠 等 . 铝合金焊缝疲劳开裂的原位同步辐射X射线成像 [J]. 焊接学报, 2015, 36(12): 5) | [18] | Song Z , Wu S C , Hu Y N , et al . The influence of metallurgical pores on fatigue behaviors of fusion welded AA7020 joints [J]. Acta Metall. Sin., 2018, 54: 1131 | [18] | (宋 哲, 吴圣川, 胡雅楠 等 . 冶金型气孔对熔化焊接7020铝合金疲劳行为的影响 [J]. 金属学报, 2018, 54: 1131) | [19] | Serrano-Munoz I , Buffiere J Y , Mokso R , et al . Location, location & size: Defects close to surfaces dominate fatigue crack initiation [J]. Sci. Rep., 2017, 7: 45239 | [20] | Yu C , Wu S C , Hu Y N , et al . Three-dimensional imaging of gas pores in fusion welded Al alloys by synchrotron radiation X-ray microtomography [J]. Acta Metall. Sin., 2015, 51: 159 | [20] | (喻 程, 吴圣川, 胡雅楠 等 . 铝合金熔焊微气孔的三维同步辐射X射线成像 [J]. 金属学报, 2015, 51: 159) | [21] | Schijve J . Fatigue of Structures and Materials [M]. Netherlands: Springer, 2009: 25 | [22] | Chen W , Chen Z Y , You Y , et al . Microstructure and fatigue behavior of EBSM Ti-6Al-4V alloy [J]. Rare Met. Mater. Eng., 2017, 46(suppl.): 25 | [22] | (陈 玮, 陈哲源, 由 洋 等 . 电子束选区熔化Ti-6Al-4V合金的显微组织与疲劳性能 [J]. 稀有金属材料与工程, 2017, 46(增刊): 25) | [23] | Murakami Y . Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions [M]. Amsterdam: Elsevier, 2002: 44 | [24] | Mu P , Nadot Y , Nadot-Martin C , et al . Influence of casting defects on the fatigue behavior of cast aluminum AS7G06-T6 [J]. Int. J. Fatigue, 2014, 63: 97 | [25] | Romano S , Brand?o A , Gumpinger J , et al . Qualification of AM parts: Extreme value statistics applied to tomographic measurements [J]. Mater. Des., 2017, 131: 32 | [26] | Beretta S , Murakami Y . Statistical analysis of defects for fatigue strength prediction and quality control of materials [J]. Fatigue Fract. Eng. Mater. Struct., 1998, 21: 1049 | [27] | Zhang J M , Zhang J F , Yang Z G , et al . Estimation of maximum inclusion size and fatigure strength in high strength steel [J]. Acta Metall. Sin., 2004, 40: 846 | [27] | (张继明, 张建锋, 杨振国 等 . 高强钢中最大夹杂物的尺寸估计与疲劳强度预测 [J]. 金属学报, 2004, 40: 846) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|