Please wait a minute...
金属学报  2017, Vol. 53 Issue (4): 423-432    DOI: 10.11900/0412.1961.2016.00291
  本期目录 | 过刊浏览 |
中国科学院金属研究所 沈阳 110016
Effect of Ru on the Solidification Microstructure of a Ni-Based Single Crystal Superalloy with High Cr Content
Likui NING(),Jian TONG,Enze LIU,Zheng TAN,Huisi JI,Zhi ZHENG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(10721 KB)   HTML


关键词 单晶高温合金Ruβ-NiAl相逆分配偏析    

Ni-based single crystal superalloys have been widely used in manufacturing the critical components of aero-engines, such as turbine blades and vanes. Improvements in phase stability on the addition of Ru are well known in the field of Ni-based superalloy development. Cr is beneficial to hot co-rrosion resistance of Ni-based superalloys. Generally, superalloys which used under easy corrosion conditions should contain high levels of Cr. Early researches about the influence of Ru on solidification microstructures in Ni-based single crystal alloys are mostly focused on low-Cr systerms (<6%). Since Cr has complex interactions with Ru, it is meanful to study the effects of Ru on solidification microstructures in high-Cr (>10%) Ni-based single crystal superalloy systems. The materials used in this work are Ni-based single crystal superalloy with high Cr content. Three superalloys by changing Ru addition (0, 1.5%, 3%, mass fraction) were designed. By observing the as-cast structure, the effect of Ru on the elements distribution and the precipitation characters of different phases in these alloys were studied. It is found that as the Ru content increases, the primary and secondary dendrite arm spacings decrease gradually; the volume fraction of (γ+γ′) eutectic increases firstly and then decreases; the γ′ size is reduced progressively. The addition of 3%Ru leads to the formation of β-NiAl phase, which contain a certain amount of Cr, Co and Ru except the basic elements Ni and Al. The typical "reverse partitioning" of other alloying elements is exhibited with the addition of Ru, while the formation of β-NiAl phase can reduce the "reverse partitioning" of other alloying elements. The addition of Ru could enhance the segregation of positive segregation elements Ta, Al and negative segregation element Re while reduce the segregation of positive segregation elements Mo and Cr.

Key wordssingle crystal superalloy    Ru    β-NiAl phase    reverse partitioning    segregation
收稿日期: 2016-07-08      出版日期: 2017-04-07
基金资助:国家自然科学基金项目 No.51501193


宁礼奎,佟健,刘恩泽,谭政,纪慧思,郑志. Ru对一种高Cr镍基单晶高温合金凝固组织的影响[J]. 金属学报, 2017, 53(4): 423-432.
Likui NING,Jian TONG,Enze LIU,Zheng TAN,Huisi JI,Zhi ZHENG. Effect of Ru on the Solidification Microstructure of a Ni-Based Single Crystal Superalloy with High Cr Content. Acta Metall, 2017, 53(4): 423-432.

链接本文:      或

图1  3种不同Ru含量合金的铸态组织
图2  Ru含量与枝晶间距的关系
图3  3种不同含Ru量合金的升温DSC曲线
图4  3种不同含Ru量合金的典型铸态SEM像
图5  1.5Ru合金中板状共晶形貌及EDS分析
图6  3Ru合金中新相的形貌及其EDS分析
图7  3Ru合金中新相TEM像和SAED谱
Alloy TS TL ΔT0
0Ru 1334 1381 47
1.5Ru 1336 1381 45
3Ru 1335 1380 45
表1  3种不同Ru含量的合金在DSC升温曲线上获得的相变温度
图8  3Ru合金中β-NiAl相的SEM像及元素面分布
图9  3种不同Ru含量合金的铸态γ'相形貌
Alloy Eutectic β-NiAl Eutectic+β-NiAl
0Ru 0.45 - 0.45
1.5Ru 0.75 - 0.75
3Ru 0.39 0.99 1.38
表2  3种不同Ru含量合金中(γ+γ')共晶和β-NiAl相的体积分数
Alloy Re Mo Ru W Cr Co Al Ta Ni
0Ru 0.260 0.574 - 2.073 6.378 6.698 7.889 10.371 65.757
1.5Ru 0.361 0.640 1.264 2.208 5.619 6.663 7.667 11.937 63.641
3Ru 0.576 0.951 2.507 2.623 8.238 7.442 6.883 10.966 59.814
表3  3种合金中(γ+γ')共晶相成分的比较
图10  3种不同Ru含量合金中各元素在γ /γ'相中的分配比
图11  3种不同Ru含量合金中各元素的偏析系数K
[1] Giamei A F, Anton D L.Rhenium additions to a Ni-base superalloy: Effects on microstructure[J]. Metall. Trans., 1985, 16A: 1997
[2] Murakami T H H, Honma T, Koizumi Y, et al. Distribution of platinum group metals in Ni-base single-crystal superalloys [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 747
[3] Yeh A C, Rae C M F, Tin S. High temperature creep of Ru-bearing Ni-base single crystal superalloys [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 677
[4] Epishin A, Link T.Mechanisms of high temperature creep of nickel-base superalloys under low applied stress [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 137
[5] Collins H E.The effect of thermal exposure on the microstructure and mechanical properties of nickel-base superalloys[J]. Metall. Trans., 1974, 5: 189
[6] Austin C M,O'Hara K S, Darolia R, et al. New nickel base super-alloy-useful for gas turbine engine single crystal air foil [P]. US Pat, 5151249-A, 1992
[7] Rea C M F, Karunaratne M S A, Small C J, et al. Topologically close packed phases in an experimental rhenium-containing single crystal superalloy [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 767
[8] Rea C M F, Reed R C. The precipitation of topologically close-packed phases in rhenium-containing superalloys[J]. Acta Mater., 2001, 49: 4113
[9] Tin S, Pollock T M.Phase instabilities and carbon additions in single-crystal nickel-base superalloys[J]. Mater. Sci. Eng., 2003, A348: 111
[10] Lavigne O, Ramusat C, Drawin S, et al.Relationships between microstructural instabilities and mechanical behaviour in new generation nickel-based single crystal superalloys [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 667
[11] O'Hara K S,Walston W S, Ross E W, et al. Nickel base superalloy and article [P]. US Pat, 5482789-A, 1996
[12] Walston S, Cetel A, MacKay R, et al. Joint development of a fourth generation single crystal superalloy [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 15
[13] Sato A, Harada H, Yokokawa T, et al.The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys[J]. Scr. Mater., 2006, 54: 1679
[14] Hobbs R A, Zhang L, Rae C M F, et al. Mechanisms of topologically close-packed phase suppression in an experimental ruthenium-bearing single-crystal nickel-base superalloy at 1100 ℃[J]. Metall. Mater. Trans., 2008, 39A: 1014
[15] Feng Q, Nandy T K, Tin S, et al.Solidification of high-refractory ruthenium-containing superalloys[J]. Acta Mater., 2003, 51: 269
[16] Hobbs R A, Tin S, Rae C M F, et al. Solidification characteristics of advanced nickel-base single crystal superalloys [A]. Super-alloys 2004[C]. Warrendale, PA: TMS, 2004: 819
[17] Kearsey R M, Beddoes J C, Jaansalu K M, et al.The effects of Re, W and Ru on microsegregation behaviour in single crystal super-alloy systems [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 801
[18] Feng Q, Carroll L J, Pollock T M.Soldification segregation in ruthenium-containing nickel-base superalloys[J]. Metall. Mater. Trans., 2006, 37A: 1949
[19] Heckl A, Neumeier S, Goken M, et al.The effect of Re and Ru on γ/γ' microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys[J]. Mater. Sci. Eng., 2011, A528: 3435
[20] Jin T.Role of ruthenium in Ni-based single crystal superalloys [D]. Shenyang: Institute of Metal Research, Chinese Academy of Science, 2009
[20] (金涛. 钌在镍基单晶高温合金中的作用 [D]. 沈阳: 中国科学院金属研究所, 2009)
[21] Liu G, Liu L, Zhao X B, et al.Effects of Re and Ru on the solidification characteristics of nickel-base single-crystal superalloys[J]. Metall. Mater. Trans., 2011, 42A: 2733
[22] Caldwell E C, Fela F J, Fuchs G E.Segregation of elements in high refractory content single crystal nickel based superalloys [A]. Superalloys 2004[C]. Warrendale, PA: TMS, 2004: 811
[23] Kurz W, Fisher D J.Fundamentals of Solidification[M]. Aedermannsdorf, Switzerland: Trans Tech Pub, 1998: 247
[24] Volek A, Pyczak F, Singer R F, et al.Partitioning of Re between γ and γ' phase in nickel-base superalloys[J]. Scr. Mater., 2005, 52: 141
[25] Blavette D, Caron P, Khan T.An atom-probe study of some fine-scale microstructural features in Ni-based single crystal super-alloys [A]. Superalloys 1988[C]. Warrendale, PA: TMS, 1988: 305
[26] Giamei A F, Anton D L.Rhenium additions to a Ni-base super-alloy: Effects on microstructure[J]. Metall. Mater. Trans., 1985, 16A: 1997
[27] Guan X R.Investigation of effects of Ti, Cr and Re on microstructure and performance of Ni-based superalloy [D]. Shenyang: Northeastern University, 2010
[27] (管秀荣. Ti, Cr, Re对镍基高温合金组织及性能影响研究 [D]. 沈阳: 东北大学, 2010)
[28] Kearsey R M, Beddoes J C, Jones P, et al.Compositional design considerations for microsegregation in single crystal superalloy systems[J]. Intermetallics, 2004, 12: 903
[1] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[2] 张玉妥,陈波,刘奎,李殿中,李依依. 低偏析技术的发展[J]. 金属学报, 2017, 53(5): 559-566.
[3] 王博,张军,潘雪娇,黄太文,刘林,傅恒志. W对第三代镍基单晶高温合金组织稳定性的影响[J]. 金属学报, 2017, 53(3): 298-306.
[4] 余建波, 侯渊, 张超, 杨志彬, 王江, 任忠鸣. 静磁场对新型Co-Al-W基高温合金定向凝固组织的影响[J]. 金属学报, 2017, 53(12): 1620-1626.
[5] 邓平, 彭群家, 韩恩厚, 柯伟, 孙晨, 夏海鸿, 焦治杰. 国产核用不锈钢辐照损伤研究[J]. 金属学报, 2017, 53(12): 1588-1602.
[6] 邹建雄,刘波,林黎蔚,任丁,焦国华,鲁远甫,徐可为. MoC掺杂钌基合金无籽晶阻挡层微结构及热稳定性研究[J]. 金属学报, 2017, 53(1): 31-37.
[7] 李军,葛鸿浩,GE Honghao,WU Menghuai,李建国. 基于热溶质对流及晶粒运动的柱状晶-非球状等轴晶混合三相模型*[J]. 金属学报, 2016, 52(9): 1096-1104.
[8] 孙元,刘纪德,侯星宇,王广磊,杨金侠,金涛,周亦胄. DD5单晶高温合金大间隙钎焊的组织演变与界面形成机制*[J]. 金属学报, 2016, 52(7): 875-882.
[9] 濮晟,谢光,王莉,潘智毅,楼琅洪. Re和W对铸态镍基单晶高温合金再结晶的影响*[J]. 金属学报, 2016, 52(5): 538-548.
[10] 郁峥嵘,丁贤飞,曹腊梅,郑运荣,冯强. 第二、三代镍基单晶高温合金含Hf过渡液相连接*[J]. 金属学报, 2016, 52(5): 549-560.
[11] 钟华,李传军,王江,任忠鸣,钟云波,玄伟东. 强磁场对定向凝固Al-4.5Cu合金微观偏析的影响*[J]. 金属学报, 2016, 52(5): 575-582.
[12] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[13] 王玉敏,李双明,钟宏,傅恒志. 定向凝固DD6单晶高温合金枝晶组织均匀性研究[J]. 金属学报, 2015, 51(9): 1038-1048.
[14] 杜随更,王喜锋,高漫. 单晶DD3与细晶GH4169高温合金摩擦焊接界面表征*[J]. 金属学报, 2015, 51(8): 951-956.
[15] 濮晟, 谢光, 郑伟, 王栋, 卢玉章, 楼琅洪, 冯强. W和Re对固溶态镍基单晶高温合金变形和再结晶的影响*[J]. 金属学报, 2015, 51(2): 239-248.