Please wait a minute...
金属学报  2016, Vol. 52 Issue (6): 717-726    DOI: 10.11900/0412.1961.2015.00505
  论文 本期目录 | 过刊浏览 |
基于蠕变损伤的定向凝固DZ125合金恢复热处理研究*
张京(),郑运荣,冯强
北京科技大学新金属材料国家重点实验室, 北京 100083
STUDY ON REJUVENATION HEAT TREATMENT OF A DIRECTIONALLY-SOLIDIFIED SUPERALLOYDZ125 DAMAGED BY CREEP
Jing ZHANG(),Yunrong ZHENG,Qiang FENG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

张京,郑运荣,冯强. 基于蠕变损伤的定向凝固DZ125合金恢复热处理研究*[J]. 金属学报, 2016, 52(6): 717-726.
Jing ZHANG, Yunrong ZHENG, Qiang FENG. STUDY ON REJUVENATION HEAT TREATMENT OF A DIRECTIONALLY-SOLIDIFIED SUPERALLOYDZ125 DAMAGED BY CREEP[J]. Acta Metall Sin, 2016, 52(6): 717-726.

全文: PDF(1571 KB)   HTML
摘要: 

以涡轮叶片用DZ125合金为研究对象, 通过蠕变中断实验模拟涡轮叶片的服役损伤, 并分别在1230, 1240和1250 ℃进行恢复热处理, 随后再次进行与恢复热处理前相同条件下的蠕变中断实验, 对比研究了恢复热处理对DZ125合金蠕变退化组织与性能的影响. 结果表明, DZ125合金在980 ℃, 207 MPa条件下经蠕变中断实验与恢复热处理后, 引发再结晶的临界应变量介于3.5%~10.0%之间. 1230 ℃固溶热处理部分消除了合金在1.0%蠕变过程中形成的粗大γ'相, 导致其经2次时效处理后的基体组织中γ'相大小不均匀, 从而部分恢复其原有性能. 固溶温度进一步提高至1240~1250 ℃, 不仅消除了粗大γ'相而且显著降低了残余共晶γ'相含量, 并在时效处理后获得均匀组织. 因此, 恢复热处理的效果得到显著提高, 达到甚至超过原有性能.

关键词 DZ125合金定向凝固蠕变恢复热处理再结晶    
Abstract

The degradation of microstructure and property in turbine blades of aircraft engines is inevitable during their service. Usually, rejuvenation heat treatment is applied to regenerate the original microstructure for extending the service life of blades and improve economic returns. To date, systematic investigations about rejuvenation heat treatment of the directionally-solidified superalloys are limited. In this work, the effect of rejuvenation heat treatment on the degraded microstructure and property of DZ125 superalloy damaged by creep was investigated. The interrupted creep test was first conducted on DZ125 superalloy to simulate the damage of turbine blades during their service. Three rejuvenation heat treatments with the solution temperature at 1230, 1240 and 1250 ℃ were applied to the interrupted creep specimen. Then, the rejuvenated specimens were retested, and their microstructures as well as creep properties were compared with those of the initial interrupted creep tests. The results showed that no recrystallization occurred after the interrupted creep tests at 1.0% and 3.5% strain followed by rejuvenation heat treatment, and the critical strain for the formation of the recrystallization was between 3.5%~10.0%. The solution treatment at 1230 ℃ partially dissolved the coarse γ' phase caused by creep deformation, caused a nonuniform microstructure of γ /γ' matrix after aging treatments, and resulting in partially recovering the baseline creep property. However, the solution treatment at 1240 and 1250 ℃ could not only dissolve the coarse γ' phase but also reduce the fraction of residual γ' eutectic significantly, and then regain a uniform microstructure of γ /γ' matrix after aging treatments. Hence, the effect of rejuvenation was further improved, maintaining or exceeding the baseline creep property.

Key wordsDZ125 alloy    directional solidification    creep    rejuvenation heat treatment    recrystallization
收稿日期: 2015-09-26     
基金资助:* 国家高技术研究发展计划项目2012AA03A513和教育部技术支撑重点项目625010337资助
图1  经过标准热处理后DZ125合金枝晶干部位的γ /γ'基体显微组织
图2  DZ125合金在980 ℃, 207 MPa条件下蠕变至不同应变的应变-时间和应变速率-时间曲线
图3  DZ125合金在980 ℃, 207 MPa条件下蠕变至1%和3.5%后枝晶干处横截面和纵截面的显微组织
图4  DZ125合金在980 ℃, 207 MPa条件下经过1.0%蠕变并经RHT-1工艺热处理后的OM像
图5  DZ125合金在980 ℃, 207 MPa条件下经3.5%和10.0%蠕变并经1240 ℃, 3 h热处理后的OM像
图6  DZ125合金在980 ℃, 207 MPa条件下经过1.0%蠕变中断实验再经RHT-1, RHT-2和RHT-3 3种工艺恢复热处理后的枝晶干处横截面显微组织
图7  DZ125合金在980 ℃, 207 MPa条件下经过1.0%蠕变中断实验再经3种工艺恢复热处理后的残余共晶γ'含量
图8  DZ125合金在980 ℃, 207 MPa条件下经过1.0%蠕变中断实验再经RHT-2工艺热处理再经1.0%蠕变中断实验后的枝晶干处横截面和纵截面显微组织
Before rejuvenation After rejuvenation T2/T1
Sample Time to 1.0% Minimum Rejuvenation Time to 1.0% Minimum strain
strain T1 strain rate V1 heat treatment strain T2 rate V2
h 10-8 s-1 h 10-8 s-1
No.1 43 4.7 - 27 7.5 0.628
No.2 38 5.6 RHT-1 33 6.5 0.868
No.3 27 7.1 RHT-2 31 7.0 1.148
No.4 27 7.4 RHT-2 37 5.4 1.370
表1  经恢复热处理工艺前后的DZ125合金在980 ℃, 207 MPa条件下的1.0%蠕变中断实验数据
[1] Feng Q, Tong J Y, Zheng Y R, Wang M L, Wei W J, Zhao H L, Yuan X F, Ding X F.Mater China, 2012; 31(12): 31
[1] (冯强, 童锦艳, 郑运荣, 王美玲, 魏文娟, 赵海龙, 袁晓飞, 丁贤飞. 中国材料进展, 2012; 31(12): 31)
[2] Li W.Gas Turbine Experiment Res, 2002; 15(2): 28
[2] (李伟. 燃气涡轮试验与研究, 2002; 15(2): 28)
[3] Tao C H, Zhang W F, Li Y J, Shi H J.Failure Anal Prevention, 2006; 1(4): 1
[3] (陶春虎, 张卫方, 李运菊, 施惠基. 失效分析与预防, 2006; 1(4): 1)
[4] Liburdi J, Lowden P, Nagy D, De Priamus T R, Shawet S. In: Proc ASME Turbo Expo, Orlando: International GasTurbine Institute, 2009: 819
[5] Guo J T.Materials Science and Engineering for Superalloys. Vol. 2, Beijing: Science Press, 2008: 405
[5] (郭建亭. 高温合金材料学(中册). 北京: 科学出版社, 2008: 405)
[6] Davies P W, Dennison J P, Evans H E.J Inst Met, 1966; 94(8): 270
[7] Steven R A, Flewitt P E J.J Mater Sci, 1978; 13: 367
[8] Dennison J P, Elliott I C, Evans H E.In: Tien J K, Wlodek S T, Morrow H, Gell M, Maurer G E eds., Superalloys 1980, Ohio: TMS, 1980: 671
[9] Dennison J P, Wilshire B.In: Taplin D M R ed., Fracture 1977, Proc 4th Int Conf on Fracture, Waterloo: University of Waterloo Press, 1977: 635
[10] Liburdi J, Stephens J O. ASME1980 International Gas Turbine Conference and Products Show, New Orleans: American Society of Mechanical Engineers, 1980: 80-GT-181
[11] Rettberg L H, Tsunekane M, Pollock T M.In: Huron E S, Reed R C, HardyM C, Mills M J, Montero R E, Portella P D, Telesman J eds., Superalloys 2012, Warrendale, Pennsylvania: TMS, 2012: 341
[12] Koul A K, Immarigeon J P, Castillo R, Lowden P, Liburdi J.In: Reichman S, Nuhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, Warrendale, Pennsylvania: TMS, 1988: 755
[13] Davies P W, Dennison J P.Met Sci, 1975; 9: 319
[14] China Aeronautical Materials Handbook Editorial Committee. China Aeronautical Materials Handbook. Vol.2, Beijing: China Sandard Pess, 2002: 771
[14] (中国航空材料手册编辑委员会. 中国航空材料手册.第2卷, 北京: 中国标准出版社, 2002: 771)
[15] Nathal M V, Mackay R A.Mater Sci Eng, 1987; A85: 127
[16] Davies P W, Dennison J P.Met Sci, 1975; 9: 319
[17] Koul A K, Castillo R.Metall Trans, 1988; 19A: 2049
[18] She L, Chen R Z, Wang T.Trans Mater Heat Treatment, 2002; (4): 13
[18] (佘力, 陈荣章, 王涛. 金属热处理学报, 2002; (4): 13)
[19] She L, Chen R Z. Rare Met, 1998; 22(4): 19(佘力, 陈荣章. 稀有金属, 1998; 22(4): 19)
[20] Chen R Z, Wang L B, Wang Y P.Acta Aeron Astronaut Sin, 1988; 7: 368
[20] (陈荣章, 王罗宝, 王玉屏. 航空学报, 1988; 7: 368)
[21] Zheng Y R, Wang L B, Li C G.Chin J Met Sci Technol, 1989; 5(2): 90
[22] Tian S G, Tian N, Yu H C, Meng X L, Li Y.Mater Sci Eng, 2014; A615: 469
[23] Zheng Y R, Cai Y L, Wang L B.Acta Metall Sin, 1983; 19: 30
[23] (郑运荣, 蔡玉林, 王罗宝. 金属学报, 1983; 19: 30
[24] Xie G, Wang L, Zhang J, Lou L H.Metall Mater Trans, 2008; 39A: 206
[25] Koizumi Y, Kobayashi T, Harada H, Yamagata T.In: Strang A, Banks W M, Conroy R D, Goulette M J eds., Advances in Turbine Materials, Design and Manufacturing, Newcastle upon Tyne: Maney Materials Science, 1997: 679
[26] Decker R F, Dewitt R R.J Met, 1965; 17: 139
[27] Jackson J J, Donachie M J, Gell M, Henricks R J.Metall Trans, 1977; 8A: 1615
[28] Ross M D, Bennett G T, Stewart D C.Rejuvenation of Turbine Blade Material by Thermal Treatment. West Palm Beach, Florida: Pratt and Whitney Aircraft, 1979: 14
[29] Zheng Y R, Han Y F.Acta Metall Sin, 2002; 38: 1203
[29] (郑运荣, 韩雅芳. 金属学报, 2002; 38: 1203)
[1] 赵鹏, 谢光, 段慧超, 张健, 杜奎. 两种高代次镍基单晶高温合金热机械疲劳中的再结晶行为[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] 张健, 王莉, 谢光, 王栋, 申健, 卢玉章, 黄亚奇, 李亚微. 镍基单晶高温合金的研发进展[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] 马德新, 赵运兴, 徐维台, 王富. 重力对高温合金定向凝固组织的影响[J]. 金属学报, 2023, 59(9): 1279-1290.
[4] 陈佳, 郭敏, 杨敏, 刘林, 张军. 新型钴基高温合金中W元素对蠕变组织和性能的影响[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] 白佳铭, 刘建涛, 贾建, 张义文. WTa型粉末高温合金的蠕变性能及溶质原子偏聚[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] 冯强, 路松, 李文道, 张晓瑞, 李龙飞, 邹敏, 庄晓黎. γ' 相强化钴基高温合金成分设计与蠕变机理研究进展[J]. 金属学报, 2023, 59(9): 1125-1143.
[7] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[10] 苏震奇, 张丛江, 袁笑坦, 胡兴金, 芦可可, 任维丽, 丁彪, 郑天祥, 沈喆, 钟云波, 王晖, 王秋良. 纵向静磁场下单晶高温合金定向凝固籽晶回熔界面杂晶的形成与演化[J]. 金属学报, 2023, 59(12): 1568-1580.
[11] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[12] 李小琳, 刘林锡, 李雅婷, 杨佳伟, 邓想涛, 王海丰. 单一 MX 型析出相强化马氏体耐热钢力学性能及蠕变行为[J]. 金属学报, 2022, 58(9): 1199-1207.
[13] 李彦强, 赵九洲, 江鸿翔, 何杰. Pb-Al合金定向凝固组织形成过程[J]. 金属学报, 2022, 58(8): 1072-1082.
[14] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[15] 高川, 邓运来, 王冯权, 郭晓斌. 蠕变时效对欠时效7075铝合金力学性能的影响[J]. 金属学报, 2022, 58(6): 746-759.