Please wait a minute...
金属学报  2005, Vol. 41 Issue (4): 351-356     
  论文 本期目录 | 过刊浏览 |
热加工工艺对GH4586合金微观组织的影响
张北江; 赵光普;焦兰英;胥国华;秦鹤勇;冯 涤
钢铁研究总院高温材料研究所; 北京 100081
Influence Of Hot Working Process On Microstructures Of Superalloy GH4586
ZHANG Beijiang; ZHAO Guangpu; JIAO Lanying; XU Guohua; QIN Heyong; FENG Di
High Temperature Materials Division; Central Iron and Steel Research Institute; Beijing 100081
引用本文:

张北江; 赵光普; 焦兰英; 胥国华; 秦鹤勇; 冯涤 . 热加工工艺对GH4586合金微观组织的影响[J]. 金属学报, 2005, 41(4): 351-356 .
, , , , , . Influence Of Hot Working Process On Microstructures Of Superalloy GH4586[J]. Acta Metall Sin, 2005, 41(4): 351-356 .

全文: PDF(556 KB)  
摘要: 在MTS热模拟实验机上采用热压缩实验的方法研究了在温度为950—1150℃、应变速率为0.001—1 s-1的实验条件范围内,GH4586合金高温塑性变形过程中变形温度、应变速率及变形量等工艺参数对流变应力和微观组织的影响。结果表明, 流变应力随着变形温度的降低和应变速率的提高而迅速增大。提高变形温度能够有效的促进动态再结晶过程, 在1100℃以上变形时, 在30%的工程应变量下即能够获得完全再结晶的锻态组织;当变形温度低于1050℃时, 工程应变超过60%仍未观察到动态再结晶。在变形量与热处理制度一定的条件下, 材料热处理后的晶粒度随变形温度的升高而增大。有效控制材料的变形温度是获得良好热加工塑性、降低变形抗力和获得均匀微观组织的关键措施。
关键词 塑性变形流变应力动态再结晶    
Abstract:The effects of temperature, strain rate and plastic strain on flow behavior and microstructures of GH4586 wrought superalloy were investigated by compressive deformation performed on MTS machine at deformation temperatures of 950 to 1150℃ and strain rates of 0.001 to 1 s-1. The results show that the flow stress increases drastically with the decrease of deformation temperature and the increase of strain rate. Dynamic recrystallization process can be effectively promoted by increasing deformation temperature. When deformation temperature is higher than 1100℃, completely recrystallized microstructures can be obtained with engineering strain of 30%, while when the temperature is lower than 1050℃, dynamic recrystallization does not occur with engineering strain up to 40\%. Grain size of annealed microstructures increases with the increase of deformation temperature. Ideal plasticity and resultant microstructures can be achieved by effective control of deformation temperature.
Key wordsplastic deformation    flow stress    dynamic recrystallization
收稿日期: 2004-05-27     
ZTFLH:  TG111.7  
[1]Zhao G P. Acta Metall Sin, 1995; 31(Suppl.): S193 (赵光普.金属学报,1995;31(增刊):S193)
[2]Xie S S, Wang T L, Lu J Y. Mater Sci Technol, 1999; 15(5): 411
[3]Xian M Z. Acta Metall Sin, 1999; 35(Suppl): S85 (羡梦芝.金属学报, 1999;35(增刊):S85)
[4]Cui T, Wang L, Lu J Y, Yang H C, Zhao G P. J Iron Steel Res, 2003; 15(7): 21 (崔彤,王磊,吕俊英,杨洪才,赵光普.钢铁研究学报, 2003;15(7):21)
[5]Meyers M A, Benson D J, Vohringer O, Kad B K, Xue Q, Fu H H. Mater Sci Eng, 2002; A322: 194
[6]Cheng L M, Poole W J, Embury J D, Lloyd D J. Metall Mater Trans, 2003; 34A: 2473
[7]Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865
[8]Martin J L, Piccolo B L, Kruml T, Bonneville J. Mater Sci Eng, 2002; 322A: 118
[9]Walgraef D. Mater Sci Eng, 2002; 322A: 167
[10]Tian B, Zickler G A, Lind C, Paris O. Acta Mater, 2003; 51: 4149
[11]Verdier M, Brechet Y, Guyot P. Acta Mater, 1999; 47: 127
[12]Sakai T, Ohashi M, Jonas J J. Acta Metall, 1988; 36: 1781
[13]Whillock R J, Buckley R A, Sellars C M. Mater Sci Eng, 2000; 276A: 124
[14]Speer J G, Hasen S S. Metall Trans, 1989; 20A: 25
[15]McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43
[16]Weertman J. J Appl Phys, 1957; 28: 362
[17]Bruni C, Forcellese A, Gabrielli F. Mater Sci Technol, 2002; 125: 242
[18]Siddall R J, Eggar J W. Mater Sci Technol, 1986; 2: 728
[19]Wahabi M E, Cabrera J M, Prado J M. Mater Sci Eng, 2003; A343: 116
[20]Ryan N D, McQueen H J. J Mech Working Technol, 1986; 12: 279
[21]Kim S I, Lee Y, Lee D L, Yoo Y C. Mater Sci Eng, 2003; A355: 384
[22]Livesey D W, Sellars C M. Mater Sci Technol, 1985; 1: 136
[1] 张海峰, 闫海乐, 方烽, 贾楠. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[4] 万涛, 程钊, 卢磊. 组元占比对层状纳米孪晶Cu力学行为的影响[J]. 金属学报, 2023, 59(4): 567-576.
[5] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[7] 郭祥如, 申俊杰. 孪生诱发软化与强化效应的Cu晶体塑性行为模拟[J]. 金属学报, 2022, 58(3): 375-384.
[8] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[9] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] 林鹏程, 庞玉华, 孙琦, 王航舵, 刘东, 张喆. 45钢块体超细晶棒材3D-SPD轧制法[J]. 金属学报, 2021, 57(5): 605-612.
[11] 石增敏, 梁静宇, 李箭, 王毛球, 方子帆. 板条马氏体拉伸塑性行为的原位分析[J]. 金属学报, 2021, 57(5): 595-604.
[12] 曹庆平, 吕林波, 王晓东, 蒋建中. 物理气相沉积制备金属玻璃薄膜及其力学性能的样品尺寸效应[J]. 金属学报, 2021, 57(4): 473-490.
[13] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[14] 赵嫚嫚, 秦森, 冯捷, 代永娟, 国栋. AlNi1Cr9Al(1~3)Ni(1~7)WVNbB钢热变形行为的影响[J]. 金属学报, 2020, 56(7): 960-968.
[15] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.