Please wait a minute...
金属学报  2005, Vol. 41 Issue (4): 347-350     
  论文 本期目录 | 过刊浏览 |
晶粒尺寸分布对纳米硬磁材料有效各向异性和矫顽力的影响
冯维存;高汝伟;李 卫
山东大学物理与微电子学院; 济南 250100
Eeffects Of Grain—Size Distribution On Effective Anisotropy And Coercivity For Nanocrystalline Hard Magnetic Material
FENG Weicun; GAO Ruwei; LI Wei
School of Physics and Microelectronics; Shandong University; Jinan 250100
引用本文:

冯维存; 高汝伟; 李卫 . 晶粒尺寸分布对纳米硬磁材料有效各向异性和矫顽力的影响[J]. 金属学报, 2005, 41(4): 347-350 .
, , . Eeffects Of Grain—Size Distribution On Effective Anisotropy And Coercivity For Nanocrystalline Hard Magnetic Material[J]. Acta Metall Sin, 2005, 41(4): 347-350 .

全文: PDF(134 KB)  
摘要: 以Nd2Fe14B为例, 研究了单相纳米晶硬磁材料中有效各向异性和矫顽力随晶粒尺寸及其分布的变化关系。计算结果表明:材料的有效各向异性和矫顽力随晶粒尺寸减小而降低, 当平均晶粒尺寸小于20 nm时, 其减小更为迅速;晶粒尺寸的非理想分布没有改变有效各向异性和矫顽力随晶粒尺寸的总体变化规律, 但使材料有效各向异性和矫顽力进一步下降. 当微结构因子pc取值为0.7时, 计算结果与Manaf等人关于矫顽力的实验结果非常接近。纳米晶硬磁材料的矫顽力随晶粒尺寸下降主要是有效各向异性常数或各向异性场的减小引起的。
关键词 Nd2Fe14B纳米硬磁材料有效各向异性    
Abstract:Taking nanocrystalline Nd2Fe14B as a typical sample, the effects of grain-size distribution on the anisotropy and coercivity in nanocrystalline hard magnetic materials have been investigated. The calculating results reveal that the effective anisotropy and coercivity of material decrease with the reduction of grain size, and rapidly decrease while the grain size is less than 20nm. The non-ideal distribution of grain size does not change the variation trendency of the effective anisotropy and coercivity with reducing grain size, however, promotes the decrease rate of effective anisotropy and coercivity. When the microstructure factor, pc, is 0.7, our calculated results agree basically with the experimental results. The decrement of coercivity is mainly due to the reduction of effective anisotropy for nanocrystalline Nd2Fe14B permanent magnetic material. nanocrystalline Nd2Fe14B hard magnet; effective anisotropy ; coercivity ; grain-size distribution
Key wordsnanocrystalline Nd2Fe14B hard magnet    effective anisotropy
收稿日期: 2004-06-23     
ZTFLH:  TG132.2  
[1]Herzer G. IEEE Trans Mag, 1990; 26: 1397
[2]Manaf A, Buckley R A, Davies H A, Leonowicz M. J Magn Magn Mater, 1991; 101: 360
[3]Areas J, Hernando A, Barandiaran J M. Phys Rev B, 1998; 58: 5193
[4]Kronmuller H, Fischer R, Seeger M, Zern A. J Phys D Appl Phys, 1996; 29: 2274
[5]Han G B, Gao R W, Yan S S, Fu S, Feng W C. Appl Phys A, in pressed
[6]Bauer J, Seager M, Zem A, Kronmuller H. J Appl Phys, 1996; 80: 1667
[7]Fischer R, Schrefl T, Kronmuller H, Fidler J. J Magn Magn Mater, 1996; 153: 35
[8]Zhang H W, Rong C B, Zhang J, Zhang S Y, Shen B G. Acta Phys Sin, 2003; 52: 718 (张宏伟,荣传兵,张健,张绍英,沈保根.物理学报,2003; 52:718)
[9]Sun X K, Zhang J, Chu Y L. Appl Phys Lett, 1999; 74: 1740B
[1] 计齐根; 田宗军; 顾本喜; 章建荣; 都有为 . Nd2Fe14B/α-Fe/非晶Nd-Fe-B三相纳米交换耦合磁体中的结构弛豫[J]. 金属学报, 2001, 37(5): 463-466 .