Please wait a minute...
金属学报  2011, Vol. 47 Issue (8): 1075-1079    DOI: 10.3724/SP.J.1037.2011.00043
  论文 本期目录 | 过刊浏览 |
激光熔覆FeCoNiCrAl2Si高熵合金涂层
张晖1,2,潘冶1,何宜柱2
1. 东南大学材料科学与工程学院江苏省先进金属材料高技术研究重点实验室, 南京 211189
2. 安徽工业大学材料科学与工程学院 安徽省金属材料与加工重点实验室, 马鞍山 243002
LASER CLADDING FeCoNiCrAl2Si HIGH–ENTROPY ALLOY COATING
ZHANG Hui 1,2, PAN Ye 1, HE Yizhu 2
1. School of Materials Science and Engineering, Jiangsu Key Lab of Advanced Metallic Materials, Southeast University, Nanjing 211189
2. School of Materials Science and Engineering, Anhui Key Lab of Materials Science and Processing, Anhui University of Technology, Maanshan 243002
全文: PDF(624 KB)  
摘要: 研究了激光熔覆后经600-1000 ℃退火处理的FeCoNiCrAl2Si高熵合金涂层的组织和性能. 结果表明, 激光熔覆过程中的快速凝固条件有利于抑制涂层中金属间化合物的析出, 涂层具有bcc结构, 为有序固溶体, 具有较高的硬度(900 HV0.5), 相结构和硬度的高温稳定性好; 涂层组织为树枝晶,Fe, Cr和Si在枝晶间富集, 而Ni, Co和Al在枝晶中富集. 随退火温度升高, Al和Si的偏析程度加剧, 而其余元素的偏析变化不明显. EBSD研究显示熔覆态涂层的枝晶和枝晶间界面分布有大量小角度晶界, 经600 ℃退火5 h后小角度晶界转变为大角度晶界, 晶粒被细化.
关键词 FeCoNiCrAl2Si 高熵合金 涂层 激光熔覆    
Abstract:The influences of laser rapid solidification and annealing treatment at 600—1000 ℃ on the microstructure and properties of laser clad FeCoNiCrAl2Si high–entropy alloy coating were investigated. The experimental results indicate that the precipitation of intermetallic compounds in the coating could be effectively inhibited by laser cladding with rapid solidification. The coating had simple ordered bcc solid solution phases with high microhardness (900 HV0.5), good high temperature phase stability and softening resistance. The coating was mainly composed of dendrites, Fe, Cr and Si are enriched in interdendritic region, Ni, Co and Al are enriched in dendritic region. As the annealing temperature increase, the segregations of Al and Si increase, but segregations of Fe, Cr, Ni and Co changed little. Massive low angle grain boundaries were distributed at the interface between dendritic and interdendritic microstructures. After annealing at 600 ℃ for 5 hours, the microstructure was greatly refined, and the grain boundary misorientation converted from low to high angles.
Key wordsFeCoNiCrAl2Si    high–entropy alloy    coating    laser cladding
收稿日期: 2011-01-18      出版日期: 2011-08-11
ZTFLH:  TG146.4  
通讯作者: 潘冶     E-mail: zrzhhzrzhh@tom.com
Corresponding author: PAN Ye     E-mail: zrzhhzrzhh@tom.com
作者简介: 张晖, 男, 1976年生, 博士生

引用本文:

张晖 潘冶 何宜柱 . 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011, 47(8): 1075-1079.
ZHANG Hui PAN Ye HE Yizhu. LASER CLADDING FeCoNiCrAl2Si HIGH–ENTROPY ALLOY COATING. Acta Metall Sin, 2011, 47(8): 1075-1079.

链接本文:

http://www.ams.org.cn/CN/10.3724/SP.J.1037.2011.00043      或      http://www.ams.org.cn/CN/Y2011/V47/I8/1075

[1] Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y. Adv Eng Mater, 2004; 6: 299
[2] Zhang K B, Fu Z Y, Zhang J Y, Shi J, Wang W M, Wang H, Wang Y C, Zhang Q J. J Alloys Compd, 2010; 502: 295
[3] Chou H P, Chang Y S, Chen S K, Yeh J W. Mater Sci Eng, 2009; B163: 184
[4] Hsu C Y, Sheu T S, Yeh J W, Chen S K. Wear, 2010; 268: 653
[5] Wen L H, Kou H C, Li J S, Chang H, Xue X Y, Zhou L. Intermetallics, 2009; 17: 266
[6] Chang H W, Huang P K, Yeh J W, Davison A, Tsau C H, Yang C C. Surf Coat Technol, 2008; 202: 3360
[7] Yao C Z, Zhang P, Liu M, Li G R, Ye J Q, Liu P, Tong Y X. Electrochim Acta, 2008; 53: 8359
[8] Singh S, Wanderka N, Murty B S, Glatzel U, Banhart J. Acta Mater, 2011; 59: 182
[9] Zhang H, He Y Z, Yuan X M, Pan Y. Appl Surf Sci, 2010; 256: 5837
[10] Li M X, He Y Z, Sun G X. Appl Surf Sci, 2004; 230: 201
[11] Zhang S H, Li M X, Cho T Y, Jae H Y, Chan G L, He Y Z. Opt Laser Technol, 2008; 40: 716
[12] Yue T M, Su Y P, Yang H O. Mater Lett, 2007; 61: 209
[13] Shun T T, Hung C H, Lee C F. J Alloys Compd, 2010; 493: 105
[14] Zhang K B, Fu Z F, Zhang J Y, Shi J, Wang W M, Wang H, Wang Y C, Zhang Q C. J Alloys Compd, 2009; 485: L31
[15] Lin C M, Tsai H L, Bor H Y. Intermetallics, 2010; 18: 1244
[16] Tong C J, Chen M R, Yeh J W, Lin S J, Chen S K, Shun T T, Chang S Y. Metall Mater Trans, 2005; 36A: 1263
[17] Zhang H, Pan Y, He Y Z. Mater Des, 2011; 32: 1910
[18] Zhang K B, Fu Z Y, Zhang J Y, Wang W M, Lee S W, Niihara K. J Alloys Compd, 2010; 495: 33
[19] Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q. Mater Sci Eng, 2010; A527: 7210
[20] Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, Hu Z Q. J Alloys Compd, 2011; 509: 3476
[1] 王鑫,王振玉,冯再新,柯培玲,汪爱英. N掺杂对V-Al-C涂层微观结构、力学及摩擦性能的影响[J]. 金属学报, 2017, 53(6): 709-718.
[2] 童文辉,赵子龙,张新元,王杰,国旭明,段新华,刘豫. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究[J]. 金属学报, 2017, 53(4): 472-478.
[3] 宋鹏, 陈榕, 冯晶, 吕建国, 陆建生. 镍基合金表面Pt改性铝化物涂层的初期Al2O3微观结构分析[J]. 金属学报, 2017, 53(11): 1504-1510.
[4] 闫茂成,杨霜,许进,孙成,吴堂清,于长坤,柯伟. 酸性土壤中破损防腐层下X80管线钢的应力腐蚀行为*[J]. 金属学报, 2016, 52(9): 1133-1141.
[5] 吴臣亮,张松,张春华,关锰,谭俊哲. 不锈钢表面FeCoCrAlCuNiMox激光高熵合金化层的相演变*[J]. 金属学报, 2016, 52(7): 797-803.
[6] 隋旭东,李国建,王强,秦学思,周向葵,王凯,左立建. 钛合金切削用Ti1-xAlxN涂层的制备及其切削性能研究*[J]. 金属学报, 2016, 52(6): 741-746.
[7] 彭新, 姜肃猛, 孙旭东, 宫骏, 孙超. 梯度NiCoCrAlYSi涂层的循环氧化及热腐蚀行为*[J]. 金属学报, 2016, 52(5): 625-631.
[8] 刘彬,贡凯,乔岩欣,董世运. 基于金属磁记忆评价裂纹埋深对激光熔覆层应力的影响*[J]. 金属学报, 2016, 52(2): 241-248.
[9] 岑升波,陈辉,刘艳,马元明,吴影. CeO2对超音速火焰喷涂WC-12Co涂层腐蚀行为的影响*[J]. 金属学报, 2016, 52(11): 1441-1448.
[10] 徐滨士,方金祥,董世运,刘晓亭,闫世兴,宋超群,夏丹. FV520B不锈钢激光熔覆热影响区组织演变及其对力学性能的影响*[J]. 金属学报, 2016, 52(1): 1-9.
[11] 刘涛,董加胜,谢光,王义胜,李辉,李志军,周兴泰,楼琅洪. GH3535合金在FLiNaK熔盐中的腐蚀行为[J]. 金属学报, 2015, 51(9): 1059-1066.
[12] 侯晓光,王恩刚,许秀杰,邓安元,王万林. 弯月面热障涂层方法对结晶器传热及铸坯振痕形貌的影响[J]. 金属学报, 2015, 51(9): 1145-1152.
[13] 齐东丽, 雷浩, 范迪, 裴志亮, 宫骏, 孙超. Mo含量对CrMoN复合涂层的组织结构和性能的影响[J]. 金属学报, 2015, 51(3): 371-377.
[14] 王勇, 郑玉贵, 王建强, 李美玲, 沈军. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51(1): 49-56.
[15] 罗新民, 王翔, 陈康敏, 鲁金忠, 王兰, 张永康. 激光冲击诱导的航空铝合金表层高熵结构及其抗蚀性[J]. 金属学报, 2015, 51(1): 57-66.