Please wait a minute...
金属学报  2017, Vol. 53 Issue (7): 808-816    DOI: 10.11900/0412.1961.2016.00575
  本期目录 | 过刊浏览 |
焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响
张苏强1,2,赵洪运1,2,舒凤远1,2(),王国栋2,3,贺文雄1,2
1 哈尔滨工业大学先进焊接与连接国家重点实验室 哈尔滨 150001
2 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室 威海 264209
3 东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution
Suqiang ZHANG1,2,Hongyun ZHAO1,2,Fengyuan SHU1,2(),Guodong WANG2,3,Wenxiong HE1,2
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Lab of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
引用本文:

张苏强,赵洪运,舒凤远,王国栋,贺文雄. 焊接热循环对Q315NS钢在H2SO4溶液中腐蚀行为的影响[J]. 金属学报, 2017, 53(7): 808-816.
Suqiang ZHANG, Hongyun ZHAO, Fengyuan SHU, Guodong WANG, Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. Acta Metall Sin, 2017, 53(7): 808-816.

全文: PDF(1964 KB)   HTML
  
摘要: 

采用焊接热模拟技术和电化学测试技术,研究了Q315NS钢焊接热影响区组织转变规律及焊接热循环对其腐蚀行为的影响。结果表明,Q315NS钢母材、细晶区和混晶区微观组织均由铁素体和珠光体组成,粗晶区主要由粗大的粒状贝氏体组成。在质量分数为50%的H2SO4溶液中,母材和热影响区的等效电路中均包含一个电荷转移电阻和一个由双电层产生的常相位角元件,且均产生了钝化行为。母材和混晶区的电荷转移电阻最大,腐蚀电流密度最小,耐腐蚀性能最好;粗晶区电荷转移电阻最小,腐蚀电流密度最大,耐腐蚀性能最差。腐蚀72 h后,母材、细晶区和混晶区表面生成的腐蚀产物均呈多孔状结构,而粗晶区表面生成的腐蚀产物为短棒状结构。2种结构的腐蚀产物均主要为Fe的硫酸盐,并含有Cu、Sb的氧化物及少量Si。

关键词 Q315NS钢焊接热循环H2SO4溶液腐蚀行为电化学    
Abstract

As the main corrosion form of coal- or heavy oil-fired boilers, dew point corrosion occurs when corrosive gases (SO3, HCl, NO2, et al) are cooled and converted to condensed acids. The condensed acids (H2SO4, HCl and HNO3) are much corrosive to steel, causing corrosion damage to plant materials. The service temperature is designed lower and lower to improve energy efficiency recently, which makes dew point corrosion more and more serious. Q315NS steel produced by appropriate alloy design is much suitable for those parts vulnerable to dew point corrosion in power and petrochemical industry due to its excellent corrosion resistance in H2SO4 solution. As an efficient and low-cost process, welding is an essential process in the utilization of Q315NS. The corrosion mechanism of the heat affected zone is much complex due to the presence of microstructure gradients, which is largely determined by the welding thermal cycle. However, there is little research elucidating the effect of welding thermal cycle on corrosion behavior of Q315NS steel in H2SO4 solution. In this work, the microstructure evolution and corrosion behaviour in the 50%H2SO4 (mass fraction) solution of welding heat affected zones of Q315NS was investigated by comparison with base metal using welding thermal simulation technique, scanning electron microscope and electrochemical measurements. The results show that the microstructures of ferrite and pearlite are observed in base metal, fine-grained region and incomplete recrystallization region, while coarse-grained region consists of granular bainite. All the equivalent circuits of Q315NS with or without welding thermal cycle contain a resistor of corrosion product and a capacitor of electric double layer, and all specimens have passivation behavior. The base metal and the incomplete recrystallization region have the lowest corrosion current density and the largest charge-transfer resistance, which means the best corrosion resistance, while the coarse-grained region has the highest corrosion current density and the least charge-transfer resistance. Rod-like shaped corrosion product was formed by deposition on the surface of the coarse-grained region specimen while a porous-structured corrosion product was formed on the surface of other specimens.

Key wordsQ315NS steel    welding thermal cycle    sulphuric acid solution    corrosion behavior    electrochemistry
收稿日期: 2016-12-27     
基金资助:哈工大科研创新基金项目No.IDGA18102104
图1  Q315NS钢母材和热影响区的SEM像
图2  母材和热影响区的显微硬度和晶粒尺寸
图3  母材和热影响区在50%H2SO4溶液中的极化曲线
Specimen Ecorr icorr -βc βa Epp Eb ip Corrosion rate
mV μAcm-2 mV mV mV mV μAcm-2 mma-1
CGHAZ -321.3 316.9 98.7 23.6 -159 403 8.71 7.390
FGHAZ -333.9 148.4 91.7 25.3 -165 409 6.87 3.927
ICHAZ -358.8 124.3 89.1 22.4 -162 420 6.60 3.419
BM -371.9 121.2 91.6 22.2 -184 425 5.19 3.313
表1  母材和热影响区在50%H2SO4溶液中的极化曲线拟合参数
图4  母材和热影响区在50%H2SO4溶液中的Nyquist图
图5  EIS拟合等效电路图
Specimen Rct / (Ωcm2) Cdl / (μFcm-2)
CGHAZ 29.314 0.438
FGHAZ 61.228 0.554
ICHAZ 75.379 0.421
BM 76.421 0.579
表2  母材和焊接热影响区在50%H2SO4溶液中EIS拟合参数
图6  母材和热影响区在50%H2SO4溶液中腐蚀72 h后腐蚀产物的SEM像
Point O Si S Sb Mn Fe Cu
I 28.72 10.48 14.92 1.30 - 39.09 5.50
II 25.74 5.80 15.10 1.28 0.67 43.70 7.72
表3  母材和粗晶区腐蚀产物的EDS分析
图7  母材在50%H2SO4溶液中腐蚀不同时间后腐蚀产物的SEM像
图8  粗晶区在50%H2SO4溶液中腐蚀不同时间后腐蚀产物的SEM像
图9  母材和粗晶区腐蚀过程示意图
[1] Liu H J.Welding Metallurgy and Welding Properties [M]. Beijing: China Machine Press, 2007: 105
[1] (刘会杰. 焊接冶金与焊接性 [M]. 北京: 机械工业出版社, 2007: 105)
[2] Du Z Y.Material Connection Principle [M]. Beijing: Mechanical Industry Press, 2011: 103
[2] (杜则裕. 材料连接原理 [M]. 北京: 机械工业出版社, 2011: 103)
[3] Feng X L, Wang L, Liu Y.Study on microstructure and dynamic fracture behavior of Q460 steel welding joints[J]. Acta Metall. Sin., 2016, 52: 787
[3] (冯祥利, 王磊, 刘杨. Q460钢焊接接头组织及动态断裂行为的研究[J]. 金属学报, 2016, 52: 787)
[4] Xia D X, Shang C J, Sun W H, et al.Microstructure and properties of high heat input welding HAZ of high strengthen steel[J]. Trans. China Weld. Inst., 2011, 32(4): 83
[4] (夏佃秀, 尚成嘉, 孙卫华等. 低合金高强钢大热输入焊接热影响区组织性能[J]. 焊接学报, 2011, 32(4): 83)
[5] Bi Z Y, Yang J, Liu H Z, et al.Investigation on the welding process and microstructure and mechanical property of butt joints of TA1/X65 clad plates[J]. Acta Metall. Sin., 2016, 52: 1017
[5] (毕宗岳, 杨军, 刘海璋等. TA1/X65复合板焊接工艺及焊缝组织和性能研究[J]. 金属学报, 2016, 52: 1017)
[6] Luk-Cyr J, El-Bawab R, Lanteigne J, et al.Mechanical properties of 75% Ar/25% CO2 flux-cored arc welded E309L austenitic stainless steel[J]. Mater. Sci. Eng., 2016, A678: 197
[7] Li X D, Shang C J, Han C C, et al.Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel[J]. Acta Metall. Sin., 2016, 52: 1025
[7] (李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响[J]. 金属学报, 2016, 52: 1025)
[8] Wen T, Liu S Y, Chen S, et al.Influence of high frequency vibration on microstructure and mechanical properties of TIG welding joints of AZ31 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 397
[9] Wei J S, Qi Y C, Tian Z L, et al.Corrosion behavior of welded joints for cargo oil tanks of crude oil carrier[J]. J. Iron Steel Res. Int., 2016, 23: 955
[10] Ming H L, Zhang Z M, Xiu P Y, et al.Microstructure, residual strain and stress corrosion cracking behavior in 316L heat-affected zone[J]. Acta Metall. Sin.(Engl. Lett.), 2016, 26: 848
[11] Razavi R S.Laser beam welding of waspaloy: Characterization and corrosion behavior evaluation[J]. Opt. Laser Technol., 2016, 82: 113
[12] Dong L J, Peng Q J, Han E H, et al.Stress corrosion cracking in the heat affected zone of a stainless steel 308L-316L weld joint in primary water[J]. Corros. Sci., 2016, 107: 172
[13] Zhu J Y, Xu L N, Feng Z C, et al.Galvanic corrosion of a welded joint in 3Cr low alloy pipeline steel[J]. Corros. Sci., 2016, 111: 391
[14] Verma J, Taiwade R V.Dissimilar welding behavior of 22% Cr series stainless steel with 316L and its corrosion resistance in modified aggressive environment[J]. J. Manuf. Process., 2016, 14: 1
[15] Zhang G A, Cheng Y F.Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution[J]. Electrochim. Acta, 2009, 55: 316
[16] Zhang G A, Cheng Y F.Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution[J]. Corros. Sci., 2009, 51: 1714
[17] Wang L W, Du C W, Liu Z Y, et al.SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution[J]. Corros. Prot., 2012, 33: 935
[17] (王力伟, 杜翠薇, 刘智勇等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究[J]. 腐蚀与防护, 2012, 33: 935)
[18] Tan W, Xu B S, Han W Z, et al.Haz corrosion of 22SiMn2TiB ultra-strength steel weldment in 3.5%NaCl solution[J]. Acta Metall. Sin., 2004, 40: 197
[18] (谭伟, 徐滨士, 韩文政等. 22SiMn2TiB超高强度钢焊接热影响区抗Cl-腐蚀性能[J]. 金属学报, 2004, 40: 197)
[19] Guo Y J, Sun T Y, Hu J C, et al.Microstructure evolution and pitting corrosion resistance of the Gleeble-simulated heat-affected zone of a newly developed lean duplex stainless steel 2002[J]. J. Alloys Compd., 2016, 658: 1031
[20] Andrews K W.Empirical formulae for the calculation of some transformation temperatures[J]. J. Iron Steel Inst., 1965, 203: 721
[21] Yin H, Li J X, Su Y J, et al.Current situation and development of maraging steel[J]. J. Iron Steel Res., 2014, 26(3): 1
[21] (尹航, 李金许, 宿彦京 等. 马氏体时效钢的研究现状与发展 [J]. 钢铁研究学报, 2014, 26(3): 1)
[22] Chen W Y, Zhou J, Hu M.Electrochemical corrosion behavior of ultrafine grained stainless steel/TiC composite materials[J]. Rare Met. Mater. Eng., 2013, 42: 2068
[22] (陈文怡, 周建, 胡明. 超细晶不锈钢/TiC复合材料的电化学腐蚀行为[J]. 稀有金属材料与工程, 2013, 42: 2068)
[23] Sun Z M, Wang B, Chen J F.Corrosion behavior of metal materials in acetic acid medium[J]. Corros. Prot., 1998, 19: 55
[23] (孙占梅, 王彪, 陈金富. 金属材料在醋酸中的腐蚀行为研究[J]. 腐蚀与防护, 1998, 19: 55)
[24] Cao C N.Principles of Electrochemistry of Corrosion [M]. 3rd Ed., Beijing: Chemical Industry Press, 2008: 64
[24] (曹楚南. 腐蚀电化学原理 [M]. 第三版, 北京: 化学工业出版社, 2008: 64)
[25] Zhang Q B, Hua Y X.Corrosion inhibition of mild steel by alkylimidazolium ionic liquids in hydrochloric acid[J]. Electrochim. Acta, 2009, 54: 1881
[26] Lebrini M, Lagrenée M, Traisnel M, et al.Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2, 5-bis(n-thienyl)-1, 3, 4-thiadiazoles: electrochemical, X-ray photoelectron spectroscopy and theoretical studies[J]. Appl. Surf. Sci., 2007, 253: 9267
[27] Naderi E, Ehteshamzadeh M, Jafari A H, et al.Effect of carbon steel microstructure and molecular structure of two new Schiff base compounds on inhibition performance in 1 M HCl solution by DC, SEM and XRD studies[J]. Mater. Chem. Phys., 2010, 120: 134
[28] Zhao W, Zou Y, Matsuda K, et al.Corrosion behavior of reheated CGHAZ of X80 pipeline steel in H2S-containing environments[J]. Mater. Des., 2016, 99: 44
[29] Al-Mansour M, Alfantazi A M, El-Boujdaini M.Sulfide stress cracking resistance of API-X100 high strength low alloy steel[J]. Mater. Des., 2009, 30: 4088
[30] Wang P, Li J P, Ma Q.Effects of gadolinium on the microstructure and corrosion resistance properties of ZK60 magnesium alloy[J]. Rare Met. Mater. Eng., 2008, 37: 1056
[30] (王萍, 李建平, 马群. Gd对ZK60铸造镁合金组织和耐蚀性能的影响[J]. 稀有金属材料与工程, 2008, 37: 1056)
[31] Kou J R, Dong R, Liu H T, et al.Corrosion failure causes of super 13Cr completion tubing strings[J]. Corros. Prot., 2015, 36: 898
[31] (寇菊荣, 董仁, 刘洪涛等. 超级13Cr完井管柱的腐蚀失效原因[J]. 腐蚀与防护, 2015, 36: 898)
[32] Ye X X, Zhou C, Zhang C.Corrosion performance of a new low alloy steel Cu-Sb-Mo for resisting dew-point corrosion induced by sulfuric acid and hydrochloric acid[J]. Corros. Sci. Prot. Technol., 2015, 27: 135
[32] (叶先祥, 周成, 张聪. 新型耐硫酸盐酸露点腐蚀钢的性能研究[J]. 腐蚀科学与防护技术, 2015, 27: 135)
[33] Chen X, Li X G, Du C W, et al.Effects of solution environments on corrosion behaviors of X70 steels under simulated disbonded coating[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 35
[33] (陈旭, 李晓刚, 杜翠薇等. 溶液环境对模拟剥离涂层下X70钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30: 35)
[34] Wu M, Meng X N, Chen X, et al.Effect of CO2 corrosion product film on the corrosion behavior of metal[J]. J. Mater. Sci. Eng., 2016, 34: 681
[34] (吴明, 孟向楠, 陈旭等. CO2腐蚀产物膜对金属腐蚀行为的影响的研究进展[J]. 材料科学与工程学报, 2016, 34: 681)
[35] Li T, Gao K W, Lu M X.Formation mechanism of CO2 corrosion product scale on X65 steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 338
[35] (李桐, 高克玮, 路民旭. X65钢CO2腐蚀产物膜形成机理[J]. 中国腐蚀与防护学报, 2007, 27: 338)
[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[3] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.
[4] 潘成成, 张翔, 杨帆, 夏大海, 何春年, 胡文彬. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为[J]. 金属学报, 2022, 58(5): 599-609.
[5] 黄一川, 王清, 张爽, 董闯, 吴爱民, 林国强. 用于燃料电池双极板的不锈钢成分优化[J]. 金属学报, 2021, 57(5): 651-664.
[6] 程伟丽, 谷雄杰, 成世明, 陈宇航, 余晖, 王利飞, 王红霞, 李航. 镁空气电池阳极用挤压态Mg-2Bi-0.5Ca-0.5In合金的放电性能和电化学行为[J]. 金属学报, 2021, 57(5): 623-631.
[7] 赵燕春, 毛雪晶, 李文生, 孙浩, 李春玲, 赵鹏彪, 寇生中. Fe-15Mn-5Si-14Cr-0.2C非晶钢微观组织与腐蚀行为[J]. 金属学报, 2020, 56(5): 715-722.
[8] 陈芳,李亚东,杨剑,唐晓,李焰. X80钢焊接接头在模拟天然气凝析液中的腐蚀行为[J]. 金属学报, 2020, 56(2): 137-147.
[9] 宋学鑫, 黄松鹏, 汪川, 王振尧. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为[J]. 金属学报, 2020, 56(10): 1355-1365.
[10] 马荣耀,王长罡,穆鑫,魏欣,赵林,董俊华,柯伟. 静水压力对超纯Fe腐蚀行为的影响[J]. 金属学报, 2019, 55(7): 859-874.
[11] 刘灿帅,田朝晖,张志明,王俭秋,韩恩厚. 地质处置低氧过渡期X65低碳钢腐蚀行为研究[J]. 金属学报, 2019, 55(7): 849-858.
[12] 杨玉林, 穆张岩, 范铮, 淡振华, 王莹, 常辉. 电化学脱合金制备纳米多孔Ag及其甲醛检测性能[J]. 金属学报, 2019, 55(10): 1302-1310.
[13] 白杨, 王振华, 李相波, 李焰. 低压冷喷涂制备Al(Y)-30%Al2O3涂层及其海水腐蚀行为[J]. 金属学报, 2019, 55(10): 1338-1348.
[14] 屈少鹏, 程柏璋, 董丽华, 尹衍升, 杨丽景. 2205钢在模拟深海热液区中的腐蚀行为[J]. 金属学报, 2018, 54(8): 1094-1104.
[15] 范丽, 陈海龑, 董耀华, 李雪莹, 董丽华, 尹衍升. 激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J]. 金属学报, 2018, 54(7): 1019-1030.