Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1425-1434    DOI: 10.11900/0412.1961.2015.00063
  本期目录 | 过刊浏览 |
不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*
张艳,郭明星(),邢辉,王斐,汪小锋,张济山,庄林忠
北京科技大学新金属材料国家重点实验室, 北京 100083
INFLUENCE OF DIFFERENT THERMOMECHANICAL PROCESSES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Al-Mg-Si-Cu ALLOY SHEETS
Yan ZHANG,Mingxing GUO,Hui XING,Fei WANG,Xiaofeng WANG,Jishan ZHANG,Linzhong ZHUANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
引用本文:

张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.
Yan ZHANG, Mingxing GUO, Hui XING, Fei WANG, Xiaofeng WANG, Jishan ZHANG, Linzhong ZHUANG. INFLUENCE OF DIFFERENT THERMOMECHANICAL PROCESSES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Al-Mg-Si-Cu ALLOY SHEETS[J]. Acta Metall Sin, 2015, 51(12): 1425-1434.

全文: PDF(2261 KB)   HTML
摘要: 

通过拉伸实验, 并利用OM, SEM, TEM观察以及EBSD测试手段, 研究了不同热加工工艺对Al-Mg-Si-Cu系合金板材力学性能和组织, 包括织构的影响规律. 结果表明, 热加工工艺的变化对T4P预时效态合金的强度和应变硬化指数n基本无影响, 但是对平均塑性应变比r-, 平面各向异性度∆r以及不同方向延伸率影响显著; 热轧之后首先进行一定量的冷轧变形然后再进行退火处理获得的合金板材(工艺Ⅱ)较热轧后直接进行退火处理(工艺I)获得的合金板材在固溶之后的成形性能要好, r-可达0.6187, 同时各向异性明显减小; 虽然工艺I处理的合金板材固溶过程中PSN效应显著, 但是工艺Ⅱ固溶处理前的冷轧变形量和不同尺寸粒子分布情况设计合理, 再结晶晶粒基本呈等轴状, 且仅含有强度较低的CubeND, Cube和H织构. 并根据热加工工艺对合金板材显微组织的影响规律, 提出该系合金随热加工工艺进行的组织演化模型示意图.

关键词 Al-Mg-Si-Cu合金热加工工艺成形性能再结晶织构模型    
Abstract

To reduce the weight of car body, Al-Mg-Si-Cu alloys are becoming increasingly attractive as a candidate for material substitution used to produce the outer body panels of automobiles because of their favorable bake-hardening response. However, the formability still needs to be further improved compared to steels. In this work, the effect of the thermomechanical processing on the mechanical properties and microstructure of Al-Mg-Si-Cu alloy is studied through tensile test, OM, SEM and TEM observation, as well as EBSD characterization. The results reveal that there is almost no change in both strengths and strain-hardening exponent n of the sheets in T4P condition after different thermomechanical processing, but the average plasticity strain ratio r-, planar anisotropy ∆r and elongations in the three directions show obvious differences. The sheet undergone hot rolling, cold rolling, intermediate annealing, cold rolling and solution (processing Ⅱ) has a better formability (r-= 0.6187) and a weaker planar anisotropy than that subjected to hot rolling, intermediate annealing and then cold rolling before solution treatment (processing I). Although the particle stimulated nucleation (PSN) effect of processing I is remarkable during solution treatment, due to the appropriate controlling cold deformation and distribution of second-phase particles with different sizes in processing Ⅱ, most of the recrystallization grains are equiaxial and the recrystallization texture is only consisted of CubeND, Cube and H with a low intensity. At last, according to the relationship between the microstructure and the thermomechanical processing, the microstructure evolution model during different thermomechanical processes is established.

Key wordsAl-Mg-Si-Cu alloy    thermomechanical processing    formability    recrystallization texture    modelling
    
基金资助:* 国家高技术研究发展计划项目2013AA032403, 国家自然科学基金项目51571023 和51301016, 中央高校基本科研业务费专项资金项目FRF-TP-14-097A2 和FRF-TP-15-051A3, 以及现代交通金属材料与加工技术北京实验室项目FRF-SD-B-005B资助
图1  不同热加工工艺处理后的T4P态Al-Mg-Si-Cu合金沿不同方向的应力-应变曲线
表1  不同热加工工艺处理后的T4P态合金沿不同方向的力学性能
图2  2种工艺处理后的T4P态合金板材沿纵向和横向拉伸后的断口SEM像
图3  2种热加工工艺处理Al-Mg-Si-Cu合金组织演化的OM像
图4  2种热加工工艺处理的中间退火态合金内粗大第二相粒子的SEM像和EDS分析
图5  2种热加工工艺处理的冷轧态合金的TEM像
图6  不同热加工工艺处理的固溶态合金对应的EBSD晶粒取向和尺寸分布图
Processing Diameter Average
<0.2 μm >0.2 μm
I 2.78×106 5.78×105 3.36×106
1.41×106 7.95×105 2.20×106
表2  不同热加工工艺处理后冷轧态合金内细小粒子分布密度
图7  不同热加工工艺处理后固溶态合金的ODF图
图8  合金在不同热加工工艺过程中的组织演化模型图
  
Processing CubeND P Cube Goss H
Intensity Content Intensity Content Intensity Content Intensity Content Intensity Content
I 5.50 15.9% 2.66 9.52% 3.63 5.79% 2.97 6.29% - -
2.11 9.54% - - 2.04 6.55% - - 3.95 5.14%
  
[1] Yu Z Q, Lin Z Q, Zhao Y X. Mater Des, 2007; 28: 203
[2] Gao Q M, Cao L S, Yu X D. Light Alloy Fabr Technol, 2009; 37: 30
[2] (高琪妹, 曹力生, 于晓丹. 轻合金加工技术, 2009; 37: 30)
[3] Engler O, Hirsch J. Mater Sci Forum, 1996; 217: 479
[4] Bennett T A, Petrov R H, Kestens L A I. Scr Mater, 2010; 63: 461
[5] Troeger L P, Starke Jr E A. Mater Sci Eng, 2000; A293: 19
[6] Peng X Y, Guo M X, Wang X F, Cui L, Zhang J S, Zhuang L Z. Acta Metall Sin, 2015; 51: 169
[6] (彭祥阳, 郭明星, 汪小峰, 崔 莉, 张济山, 庄林忠. 金属学报, 2015; 51: 169)
[7] Lievers W B, Pilkey A K, Lloyd D J. Mater Sci Eng, 2003; A361: 312
[8] Lankford W T, Snyder S C, Bauscher J A. Trans Am Soc Met, 1950; 42: 1197
[9] Hirofumi I, Takayuki T. Mater Trans, 2007; 48: 2014
[10] Leu D K. Int J Mach Tools Manuf, 1997; 37: 201
[11] Humphreys F J. Acta Metall, 1977; 25: 1323
[12] Orsund R, Nes E. Scr Mater, 1988; 22: 665
[13] Davies R K, Randle V, Marshall G J. Acta Mater, 1998; 46: 6021
[14] Bennett T A, Petrov R H, Kestensv L A I. Scr Mater, 2010; 62: 78
[15] Higginson R L, Aindow M, Bate P S. Mater Sci Eng, 1997; A225: 9
[16] Ito K, Musick R, Lucke K. Acta Metall, 1983; 31: 2137
[17] Jensen D J, Hansen N, Humphreys E J. Acta Metall, 1985; 33: 2155
[18] Hansen N, Jensen D J. Metall Trans, 1986; 17A: 253
[19] Hirsch J, Nes E, Lucke K. Acta Metall, 1987; 35: 427
[20] Kashihara K, Inagaki H. Metall Trans, 2009; 50A: 528
[21] Humphreys F J. Acta Metall, 1977; 25: 1323
[22] Engler O. Mater Sci Technol, 1996; 12: 859
[1] 徐永生, 张卫刚, 徐凌超, 但文蛟. 铁素体晶间变形协调与硬化行为模拟研究[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] 张禄, 余志伟, 张磊成, 江荣, 宋迎东. GH4169高温合金热机械疲劳循环损伤机理及数值模拟[J]. 金属学报, 2023, 59(7): 871-883.
[4] 王寒玉, 李彩, 赵璨, 曾涛, 王祖敏, 黄远. 基于纳米活性结构的不互溶W-Cu体系直接合金化及其热力学机制[J]. 金属学报, 2023, 59(5): 679-692.
[5] 刘满平, 薛周磊, 彭振, 陈昱林, 丁立鹏, 贾志宏. 后时效对超细晶6061铝合金微观结构与力学性能的影响[J]. 金属学报, 2023, 59(5): 657-667.
[6] 张志东. 铁磁性三维Ising模型精确解及时间的自发产生[J]. 金属学报, 2023, 59(4): 489-501.
[7] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[8] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[9] 居天华, 舒念, 何维, 丁学勇. 合金溶液中溶质间活度相互作用系数预测模型[J]. 金属学报, 2023, 59(11): 1533-1540.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 王楠, 陈永楠, 赵秦阳, 武刚, 张震, 罗金恒. 应变速率对X80管线钢铁素体/贝氏体应变分配行为的影响[J]. 金属学报, 2023, 59(10): 1299-1310.
[12] 吴国华, 童鑫, 蒋锐, 丁文江. 铸造Mg-RE合金晶粒细化行为研究现状与展望[J]. 金属学报, 2022, 58(4): 385-399.
[13] 韩汝洋, 杨庚蔚, 孙新军, 赵刚, 梁小凯, 朱晓翔. 钒微合金化中锰马氏体耐磨钢奥氏体晶粒长大行为[J]. 金属学报, 2022, 58(12): 1589-1599.
[14] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[15] 骆文泽, 胡龙, 邓德安. SUS316不锈钢马鞍形管-管接头的残余应力数值模拟及高效计算方法开发[J]. 金属学报, 2022, 58(10): 1334-1348.