Please wait a minute...
金属学报  2015, Vol. 51 Issue (12): 1425-1434    DOI: 10.11900/0412.1961.2015.00063
  本期目录 | 过刊浏览 |
不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*
张艳,郭明星(),邢辉,王斐,汪小锋,张济山,庄林忠
北京科技大学新金属材料国家重点实验室, 北京 100083
INFLUENCE OF DIFFERENT THERMOMECHANICAL PROCESSES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Al-Mg-Si-Cu ALLOY SHEETS
Yan ZHANG,Mingxing GUO,Hui XING,Fei WANG,Xiaofeng WANG,Jishan ZHANG,Linzhong ZHUANG
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing,Beijing 100083
全文: PDF(2261 KB)   HTML  
摘要: 

通过拉伸实验, 并利用OM, SEM, TEM观察以及EBSD测试手段, 研究了不同热加工工艺对Al-Mg-Si-Cu系合金板材力学性能和组织, 包括织构的影响规律. 结果表明, 热加工工艺的变化对T4P预时效态合金的强度和应变硬化指数n基本无影响, 但是对平均塑性应变比r-, 平面各向异性度∆r以及不同方向延伸率影响显著; 热轧之后首先进行一定量的冷轧变形然后再进行退火处理获得的合金板材(工艺Ⅱ)较热轧后直接进行退火处理(工艺I)获得的合金板材在固溶之后的成形性能要好, r-可达0.6187, 同时各向异性明显减小; 虽然工艺I处理的合金板材固溶过程中PSN效应显著, 但是工艺Ⅱ固溶处理前的冷轧变形量和不同尺寸粒子分布情况设计合理, 再结晶晶粒基本呈等轴状, 且仅含有强度较低的CubeND, Cube和H织构. 并根据热加工工艺对合金板材显微组织的影响规律, 提出该系合金随热加工工艺进行的组织演化模型示意图.

关键词 Al-Mg-Si-Cu合金热加工工艺成形性能再结晶织构模型    
Abstract

To reduce the weight of car body, Al-Mg-Si-Cu alloys are becoming increasingly attractive as a candidate for material substitution used to produce the outer body panels of automobiles because of their favorable bake-hardening response. However, the formability still needs to be further improved compared to steels. In this work, the effect of the thermomechanical processing on the mechanical properties and microstructure of Al-Mg-Si-Cu alloy is studied through tensile test, OM, SEM and TEM observation, as well as EBSD characterization. The results reveal that there is almost no change in both strengths and strain-hardening exponent n of the sheets in T4P condition after different thermomechanical processing, but the average plasticity strain ratio r-, planar anisotropy ∆r and elongations in the three directions show obvious differences. The sheet undergone hot rolling, cold rolling, intermediate annealing, cold rolling and solution (processing Ⅱ) has a better formability (r-= 0.6187) and a weaker planar anisotropy than that subjected to hot rolling, intermediate annealing and then cold rolling before solution treatment (processing I). Although the particle stimulated nucleation (PSN) effect of processing I is remarkable during solution treatment, due to the appropriate controlling cold deformation and distribution of second-phase particles with different sizes in processing Ⅱ, most of the recrystallization grains are equiaxial and the recrystallization texture is only consisted of CubeND, Cube and H with a low intensity. At last, according to the relationship between the microstructure and the thermomechanical processing, the microstructure evolution model during different thermomechanical processes is established.

Key wordsAl-Mg-Si-Cu alloy    thermomechanical processing    formability    recrystallization texture    modelling
     出版日期: 2015-08-13
基金资助:* 国家高技术研究发展计划项目2013AA032403, 国家自然科学基金项目51571023 和51301016, 中央高校基本科研业务费专项资金项目FRF-TP-14-097A2 和FRF-TP-15-051A3, 以及现代交通金属材料与加工技术北京实验室项目FRF-SD-B-005B资助

引用本文:

张艳,郭明星,邢辉,王斐,汪小锋,张济山,庄林忠. 不同热加工工艺对Al-Mg-Si-Cu合金板材力学性能和组织的影响*[J]. 金属学报, 2015, 51(12): 1425-1434.
Yan ZHANG,Mingxing GUO,Hui XING,Fei WANG,Xiaofeng WANG,Jishan ZHANG,Linzhong ZHUANG. INFLUENCE OF DIFFERENT THERMOMECHANICAL PROCESSES ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF Al-Mg-Si-Cu ALLOY SHEETS. Acta Metall, 2015, 51(12): 1425-1434.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2015.00063      或      http://www.ams.org.cn/CN/Y2015/V51/I12/1425

图1  不同热加工工艺处理后的T4P态Al-Mg-Si-Cu合金沿不同方向的应力-应变曲线
表1  不同热加工工艺处理后的T4P态合金沿不同方向的力学性能
图2  2种工艺处理后的T4P态合金板材沿纵向和横向拉伸后的断口SEM像
图3  2种热加工工艺处理Al-Mg-Si-Cu合金组织演化的OM像
图4  2种热加工工艺处理的中间退火态合金内粗大第二相粒子的SEM像和EDS分析
图5  2种热加工工艺处理的冷轧态合金的TEM像
图6  不同热加工工艺处理的固溶态合金对应的EBSD晶粒取向和尺寸分布图
Processing Diameter Average
<0.2 μm >0.2 μm
I 2.78×106 5.78×105 3.36×106
1.41×106 7.95×105 2.20×106
表2  不同热加工工艺处理后冷轧态合金内细小粒子分布密度
图7  不同热加工工艺处理后固溶态合金的ODF图
图8  合金在不同热加工工艺过程中的组织演化模型图
  
Processing CubeND P Cube Goss H
Intensity Content Intensity Content Intensity Content Intensity Content Intensity Content
I 5.50 15.9% 2.66 9.52% 3.63 5.79% 2.97 6.29% - -
2.11 9.54% - - 2.04 6.55% - - 3.95 5.14%
  
[1] Yu Z Q, Lin Z Q, Zhao Y X. Mater Des, 2007; 28: 203
[2] Gao Q M, Cao L S, Yu X D. Light Alloy Fabr Technol, 2009; 37: 30
[2] (高琪妹, 曹力生, 于晓丹. 轻合金加工技术, 2009; 37: 30)
[3] Engler O, Hirsch J. Mater Sci Forum, 1996; 217: 479
[4] Bennett T A, Petrov R H, Kestens L A I. Scr Mater, 2010; 63: 461
[5] Troeger L P, Starke Jr E A. Mater Sci Eng, 2000; A293: 19
[6] Peng X Y, Guo M X, Wang X F, Cui L, Zhang J S, Zhuang L Z. Acta Metall Sin, 2015; 51: 169
[6] (彭祥阳, 郭明星, 汪小峰, 崔 莉, 张济山, 庄林忠. 金属学报, 2015; 51: 169)
[7] Lievers W B, Pilkey A K, Lloyd D J. Mater Sci Eng, 2003; A361: 312
[8] Lankford W T, Snyder S C, Bauscher J A. Trans Am Soc Met, 1950; 42: 1197
[9] Hirofumi I, Takayuki T. Mater Trans, 2007; 48: 2014
[10] Leu D K. Int J Mach Tools Manuf, 1997; 37: 201
[11] Humphreys F J. Acta Metall, 1977; 25: 1323
[12] Orsund R, Nes E. Scr Mater, 1988; 22: 665
[13] Davies R K, Randle V, Marshall G J. Acta Mater, 1998; 46: 6021
[14] Bennett T A, Petrov R H, Kestensv L A I. Scr Mater, 2010; 62: 78
[15] Higginson R L, Aindow M, Bate P S. Mater Sci Eng, 1997; A225: 9
[16] Ito K, Musick R, Lucke K. Acta Metall, 1983; 31: 2137
[17] Jensen D J, Hansen N, Humphreys E J. Acta Metall, 1985; 33: 2155
[18] Hansen N, Jensen D J. Metall Trans, 1986; 17A: 253
[19] Hirsch J, Nes E, Lucke K. Acta Metall, 1987; 35: 427
[20] Kashihara K, Inagaki H. Metall Trans, 2009; 50A: 528
[21] Humphreys F J. Acta Metall, 1977; 25: 1323
[22] Engler O. Mater Sci Technol, 1996; 12: 859
[1] 耿遥祥,林鑫,羌建兵,王英敏,董闯. Finemet型纳米晶软磁合金的双团簇特征与成分优化[J]. 金属学报, 2017, 53(7): 833-841.
[2] 陶辉锦,周珊,刘宇,尹健,许昊. D019-Ti3Al中点缺陷浓度与相互作用的第一性原理研究[J]. 金属学报, 2017, 53(6): 751-759.
[3] 陈树君,徐斌,蒋凡. 变极性等离子弧焊电弧物理特性的数值模拟[J]. 金属学报, 2017, 53(5): 631-640.
[4] 周丽,崔超,贾清,马英石. γ-TiAl金属间化合物铣削加工实验与有限元模拟[J]. 金属学报, 2017, 53(4): 505-512.
[5] 耿遥祥,张志杰,王英敏,羌建兵,董闯,汪海斌,特古斯. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联[J]. 金属学报, 2017, 53(3): 369-375.
[6] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[7] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[8] 初冠南,林艳丽,宋伟宁,张林. 基于二次多项式新本构模型的铝合金搅拌摩擦焊板材成形极限研究[J]. 金属学报, 2017, 53(1): 114-122.
[9] 闫二虎,孙立贤,徐芬,徐达鸣. 基于Thermo-Calc和微观偏析统一模型对Al-6.32Cu-25.13Mg合金凝固路径的预测*[J]. 金属学报, 2016, 52(5): 632-640.
[10] 刘力恒,车淳山,孔纲,卢锦堂,张双红. 热镀Zn-0.2%Al镀层中Fe-Al抑制层失稳机理及其热力学评估*[J]. 金属学报, 2016, 52(5): 614-624.
[11] 唐海燕,梁永昌. 钢包浇注末期汇流旋涡形成机理及影响因素*[J]. 金属学报, 2016, 52(5): 519-528.
[12] 王长军,梁剑雄,刘振宝,杨志勇,孙新军,雍岐龙. 亚稳奥氏体对低温海工用钢力学性能的影响与机理*[J]. 金属学报, 2016, 52(4): 385-393.
[13] 林金保,任伟杰,王心怡. 挤压态ZK60镁合金室温拉-压不对称性研究*[J]. 金属学报, 2016, 52(3): 264-270.
[14] 邢辉, 郭明星, 汪小锋, 张艳, 张济山, 庄林忠. 不同浓度富Fe相粒子对Al-Mg-Si-Cu系合金弯边性能的影响*[J]. 金属学报, 2016, 52(3): 271-280.
[15] 耿遥祥,王英敏,羌建兵,董闯,汪海斌,特古斯. Fe-B-Si-Nb块体非晶合金的成分设计与优化*[J]. 金属学报, 2016, 52(11): 1459-1466.