Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (5): 449-455    DOI:
Current Issue | Archive | Adv Search |
DISLOCATION FEATURES IN POLYSYNTHETICALLY TWINNED TiAl CRYSTALS AFTER DEFORMATION AT ROOM TEMPERATURE
LIU Yi; LIN Dongliang; WANG Dening; CHEN Da; CHEN Shipu (Shanghai Jiaotong University; Shanghai 200030;State Key Laboratory of Solid State Microstructures; Nanjing University; Nanjing 210008); LIU Zhiguo; MENG Xiangkang (Nanjing University; Nanjing 210008)(Manuscript received 1995-09-07)
Cite this article: 

LIU Yi; LIN Dongliang; WANG Dening; CHEN Da; CHEN Shipu (Shanghai Jiaotong University; Shanghai 200030;State Key Laboratory of Solid State Microstructures; Nanjing University; Nanjing 210008); LIU Zhiguo; MENG Xiangkang (Nanjing University; Nanjing 210008)(Manuscript received 1995-09-07). DISLOCATION FEATURES IN POLYSYNTHETICALLY TWINNED TiAl CRYSTALS AFTER DEFORMATION AT ROOM TEMPERATURE. Acta Metall Sin, 1996, 32(5): 449-455.

Download:  PDF(520KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dislocation features in polysynthetically twinned (PST) TiAl crystal deformed at room temperature have been investigated by TEM. Large amount of microtwins,1 / 2< 110] ordinary dislocations, < 011] and 1 / 2<112] superlattice dislocations have been found. The <011] dislocations often dissociate according to the following mode:[101]→1 / 2[101] + APB + 1 / 6[211] + SISF+1 / 6[12] The 1 / 2< 112] dislocations often dissociate to form faulted dipoles bounded by 1 / 6< 1 12]partial dislocations. The effects of these features on the deformation of PST TiAl crystal at room temperature have been discussed.
Key words:  polysynthetically twinned crystal      TiAl      intermetallics      dislocation      deformation     
Received:  18 May 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I5/449

1KimY-W.JOM,1989;41:242HallEL,HuangSC.JMaterRes,1989;4:5953FujiwaraT,NakamuraA,HosomiM,NishitauiSR,ShiraiY,YamaguchiM.PhilosMag,1990;60A:5914InuiH,OhMH,NakamuraA,YamaguchiM.PhilosMag,1992;66A:5395刘毅,汪德宁,林栋梁,陈世朴,刘治国.金属学报,1995;31:3936InuiH,NakamuraA,OhMH,YamaguchiM.PhilosMag,1992;66A:5577黄孝瑛.电子显微图像分析原理及应用.北京:宇航出版社,1989:2698YaoK-F,InuiH,KishidaK,YamaguchiM.ActaMetallMater,1995;43:10759GreenbergBA,AntonovaOV,KarkinaLE,NatkinAB,PonomarevMV.ActaMetallMater,1992;40:81510CourtSA,VasudevanVK,FraserHL.PhilosMag,1990;61A:141
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[5] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[12] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[13] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[14] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!