Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (5): 511-516    DOI:
Current Issue | Archive | Adv Search |
THE NUCLEATION OF HIGHLY UNDERCOOLED Ni-Ni_3Si ALLOY CLOSED TO EUTECTIC COMPOSITION
XI Zengzhe; YANG Gencang; LU Yili; ZHOU Yaohe (State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072)
Cite this article: 

XI Zengzhe; YANG Gencang; LU Yili; ZHOU Yaohe (State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072). THE NUCLEATION OF HIGHLY UNDERCOOLED Ni-Ni_3Si ALLOY CLOSED TO EUTECTIC COMPOSITION. Acta Metall Sin, 1998, 34(5): 511-516.

Download:  PDF(1308KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The micro-denucleation technique of bulk melt was applied to Ni-Ni3Si alloy system. In two composition ranges of Ni-(6.07 - 19.7)%Si and Ni-(20.5 - 22)%Si, the alloys were undercooled up to the highest undercooling of 344 and 265 K respectively. The highest undercooling could be held for 20 melting-superheating-cooling circles. The experimental results indicated that, during the solidification of the alloys with compositions closed to the eutectic composition in Ni-Ni3Si alloy system, Ni3Si was always nucleated heterogeneously ahead of α(Ni) phase. The catalytic factors f(θ) of Ni3Si and α(Ni) were 0.069 and 0.28 respectively,calculated with the experimental data and the kinetic model of heterogeneous surface nucleation.The temperature vs composition curve with the same nucleation rate for Ni3Si and α(Ni) lay on the left side of eutectic point completely, which indicated that in the undercooled melts closed to the eutectic composition the nucleation of faceted Ni3Si phase was easier than that of α(Ni)phase.
Key words:  Ni-Si alloy      high undercooling      nucleation      catalytic factor     
Received:  18 May 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I5/511

1Xi Z Z, Yang G C, Zhou Y H. Prog Nat Sci, 1997; 7: 624
2Nash P. Phase Diagrams of Binary Nickel Alloys. Materials Park, Ohio: ASM International, 1991: 299
3Willnecker R,Herlach D M,Feuerbacher B.Mater Sci Eng,1988;98:85
4Willnecker R, Herlach D M; Feuerbacher B. Appl Phys Lett, 1986; 49: 1339
5Jacobson L A, McKittrick J. Mater Sci Eng, 1994; R11(8): 355
6Thompson C V,Spaepen F.Acta Metall,1983;31:2021
7Spaepen F, Meyer R B. Scr Metall, 1976 10: 257
8 Herlach D M.Mate,Sci Eng,1994;R12(4-5):177
9Perepezko J H. Mater Sci Eng, 1984; 65: 125
10Kubaschewki O; Alcock C B. Metall Thermochem. Oxford: Pergamon Press, 1979: 244
[1] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[2] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[3] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[4] Juan DU, Xiaoxing CHENG, Tiannan YANG, Longqing CHEN, Frédéric Mompiou, Wenzheng ZHANG. In Situ TEM Study on the Sympathetic Nucleation of Austenite Precipitates[J]. 金属学报, 2019, 55(4): 511-520.
[5] LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys[J]. 金属学报, 2019, 55(10): 1291-1301.
[6] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[7] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[8] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[9] Jincheng WANG, Can GUO, Qi ZHANG, Sai TANG, Junjie LI, Zhijun WANG. Recent Progresses in Modeling of Nucleation During Solidification on the Atomic Scale[J]. 金属学报, 2018, 54(2): 204-216.
[10] Tongmin WANG, Jingjing WEI, Xudong WANG, Man YAO. Progress and Application of Microstructure Simulation of Alloy Solidification[J]. 金属学报, 2018, 54(2): 193-203.
[11] Zongyuan ZOU, Xiaokui XU, Yinxiao LI, Chao WANG. Study on the Method of Improving the Toughness of CGHAZ for High Heat Input Welding Steels[J]. 金属学报, 2017, 53(8): 957-967.
[12] Jin WANG, Yuefei ZHANG, Jinyao MA, Jixue LI, Ze ZHANG. Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test[J]. 金属学报, 2017, 53(12): 1627-1635.
[13] Yong YANG,Zhaodong WANG,Tianrui LI,Tao JIA,Xiaolin LI,Guodong WANG. A Model for Precipitation-Temperature-Time Curve Calculation[J]. 金属学报, 2017, 53(1): 123-128.
[14] Junhui YAN,Zengyun JIAN,Man ZHU,Fang'e CHANG,Junfeng XU. SOLIDIFICATION CHARACTERISTICS AND MICRO-STRUCTURE OF HIGH UNDERCOOLED Al-70%Si ALLOY[J]. 金属学报, 2016, 52(8): 931-937.
[15] Rui CHEN, Qingyan XU, Qinfang WU, Huiting GUO, Baicheng LIU. NUCLEATION MODEL AND DENDRITE GROWTH SIMULATION IN SOLIDIFICATON PROCESS OF Al-7Si-Mg ALLOY[J]. 金属学报, 2015, 51(6): 733-744.
No Suggested Reading articles found!