Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1291-1301    DOI: 10.11900/0412.1961.2019.00080
Current Issue | Archive | Adv Search |
Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys
LI Dongmei1,2,JIANG Beibei1,LI Xiaona1,WANG Qing1,DONG Chuang1()
1. Key Lab of Materials Modification by Laser, Iron and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2. School of Mechanical Engineering, Inner Mongolia University For Nationalities, Tongliao 028000, China
Download:  HTML  PDF(12680KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cu-Ni-Si alloys are among the most widely used electrical conductive (>30%IACS) alloys with quite high strength level (>500 MPa), so they are especially suitable for lead frames and connector joints. However, these two properties are quite composition sensitive, apart from their tight connection with processing. Moreover, their compositions fall within quite broad ranges that poses difficulties for the industries. For instance, typical C7025 alloy has a specified composition (mass fraction, %) range of Ni 2.2~4.2, Si 0.25~1.2, Mg 0.05~0.3, plus less than 0.5 of other impurity elements. Obviously the composition ranges of the elements are far from even their absolute contents. The present work focuses on understanding the composition rule of Cu-Ni-Si via a new structural tool, the cluster-plus-glue-atom model. In this model, any solid solution is described by a nearest neighbor coordination polyhedron plus a one-to-six glue atoms. Specifically for Cu-based alloys, the cluster is cubooctahedron. The composition formula for solute-rich Cu-Ni-Si alloys and pure Cu are established, respectively [(Ni2/3Si1/3)-Cu12]Cu1~6 and [Cu-Cu12]Cu3. A series of Cu-Ni-Si alloys were designed on the basis of the cluster-plus-glue-atom model. In the concentrated solute region with Cu content less than 95%, the alloys were designed using the single cluster model [(Ni2/3Si1/3)-Cu12]Cu1~6. In the dilute solute region where Cu content is larger than or equal to 95%, the alloys were designed using the double cluster model {[(Ni2/3Si1/3)-Cu12]Cu3}A+{[Cu-Cu12]Cu3}B. The alloys were arc-melted into ingots under Ar atmosphere and were subjected to a solution treatment at 950 ℃ for 1 h plus water quenching, and then to an ageing at 450 ℃ for 4 h plus water quenching. The microstructure and properties of the alloys were characterized and tested by XRD, OM, TEM, Vickers hardness tester and digital metal conductivity instrument. The composition rule of the designed Cu-Ni-Si alloy was obtained by experiments.The results shown a special range of Cu content in 95.0%~95.8% as a composition sensitive region, in which, in addition to ageing precipitation strengthening, the alloys also have amplitude modulated decomposition strengthening, resulting in a sudden increase in Vickers hardness and a decrease in electrical conductivity. Vickers hardness and electrical conductivity change with composition variations in an irregular manner. In the concentrated and dilute solute region before and after the composition sensitive region, Vickers hardness (H) is linearly related to the Cu content (CCu) by H=-12.6CCu+1362.7 and H=-26.2CCu+2777.3, and the corresponding electrical conductivity (σ) is also linearly related to the CCu by σ=0.2CCu+28.6 and σ=5.2CCu-466.

Key words:  Cu-Ni-Si alloy      composition rule      hardness      electrical conductivity      composition sensitive region     
Received:  25 March 2019     
ZTFLH:  TG146.1  
Corresponding Authors:  Chuang DONG     E-mail:  dong@dlut.edu.cn

Cite this article: 

LI Dongmei, JIANG Beibei, LI Xiaona, WANG Qing, DONG Chuang. Composition Rule of High Hardness and Electrical Conductivity Cu-Ni-Si Alloys. Acta Metall Sin, 2019, 55(10): 1291-1301.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00080     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1291

Commercial-grade alloy

Composition, mass fraction / %

(atomic fraction / %)

Ni/Si

(atomic ratio)

Electrical conductivity / %IACS

Vickers hardness

HV

CAC65[21]

Cu-3.2Ni-0.68Si-0.5Sn-1.0Zn

2.2

48

200

(Cu93.81Ni3.43Si1.53Sn0.27Zn0.96)

KLF-125[19]

Cu-3.2Ni-0.75Si-1.25Sn-0.3Zn

2.0

35

200

(Cu93.92Ni3.44Si1.69Sn0.66Zn0.29)

KLFA85[20]

Cu-3.2Ni-0.7Si-1.1Zn

2.2

40

260

(Cu93.95Ni3.42Si1.57Zn1.06)

HCL305[23]

Cu-2.5Ni-0.5Si-1.7Zn-0.03P

2.3

43

180

(Cu94.49Ni2.69Si1.12Zn1.64P0.06)

KLF-1[18]

Cu-3.2Ni-0.75Si-0.32Zn

2.0

55

180

(Cu94.59Ni3.42Si1.68Zn0.31)

MAX375[24]

Cu-2.85Ni-0.7Si-0.5Sn-0.5Zn

1.9

40

230

(Cu94.62Ni3.06Si1.57Sn0.27Zn0.48)

QSi0.7[19]

Cu-3.2Ni-0.7Si-0.3Zn

2.2

56

220

(Cu94.72Ni3.42Si1.57Zn0.29)

C7025[22]

Cu-3.0Ni-0.65Si-0.15Mg

2.5

40

200

(Cu94.96Ni3.2Si1.45Mg0.39)

EFTEC-23Z[22]

Cu-2.5Ni-0.65Si-0.5Zn-0.03Ag

1.8

53

200

(Cu95.37Ni2.67Si1.46Zn0.48Ag0.02)

MAX251[24]

Cu-2Ni-0.5Si-0.5Sn-1Zn

1.9

48

178

(Cu95.49Ni2.15Si1.13Sn0.27Zn0.96)

MAX251C[24]

Cu-2Ni-0.5Si-0.5Sn-1Zn

1.9

37

195

(Cu95.49Ni2.15Si1.13Sn0.27Zn0.96)

C7035[21]

Cu-1.5Ni-0.6Si-1.1Co

2.1

55

260

(Cu95.87Ni1.61Si1.35Co1.17)

CW111C[21]

Cu-2.05Ni-0.6Si

1.6

40

150

(Cu96.46Ni2.2Si1.34)

C7026[25]

Cu-2Ni-0.45Si

2.1

40

200

(Cu96.84Ni2.15Si1.01)

C19010[26]

Cu-1.6Ni-0.3Si

2.5

60

150

(Cu97.6Ni1.72Si0.68)

QSi0.25[20]

Cu-1.0Ni-0.25Si-0.1Zn

1.9

61

160

(Cu98.26Ni1.08Si0.56Zn0.1)
Table1  Composition, Ni/Si, electrical conductivity and Vickers hardness of commercial-grade Cu-Ni-Si alloy[18,19,20,21,22,23,24,25,26]
Fig.1  Two-dimensional projection diagram of Ni-Si cluster structural units dispersed in Cu matrix

No.

Cluster formula

Composition, mass fraction / %

(atomic fraction / %)

Electrical conductivity

%IACS

Vickers hardness HV

FWHM

(°)

1

[(Ni2/3Si1/3)1.106-Cu12]Cu0.894

93.9Cu-4.95Ni-1.19Si

49

201

0.322

(Cu92.1Ni5.3Si2.6)

2

[(Ni2/3Si1/3)1.05-Cu12]Cu0.95

94.2Cu-4.7Ni-1.1Si

51

195

0.326

(Cu92.5Ni5Si2.5)

3

[(Ni2/3Si1/3)-Cu12]Cu1

94.4Cu-4.5Ni-1.1Si

51

193

0.329

(Cu92.8Ni4.8Si2.4)

4

[(Ni2/3Si1/3)-Cu12]Cu2

94.8Cu-4.2Ni-1Si

51

187

0.318

(Cu93.3Ni4.4Si2.2)

5

[(Ni2/3Si1/3)-Cu12]Cu3

95.1Cu-4Ni-0.9Si

52

183

0.25

(Cu93.7Ni4.2Si2.1)

6

[(Ni2/3Si1/3)-Cu12]Cu4

95.5Cu-3.6Ni-0.9Si

51

176

0.277

(Cu94.1Ni3.9Si2)

7

[(Ni2/3Si1/3)-Cu12]Cu6

95.9Cu-3.3Ni-0.8Si

50

169

0.314

(Cu94.7Ni3.5Si1.8)

8

{[(Ni2/3Si1/3)-Cu12]Cu3}4+

{[Cu-Cu12]Cu3}1

96.1Cu-3.1Ni-0.8Si

51

161

0.266

(Cu95Ni3.3Si1.7)

9

{[(Ni2/3Si1/3)-Cu12]Cu3}2+

{[Cu-Cu12]Cu3}1

96.8Cu-2.62Ni-0.63Si

39

216

0.348

(Cu95.8Ni2.8Si1.4)

10

{[(Ni2/3Si1/3)1.0602-Cu12]Cu3}0.996 +{[Cu-Cu12]Cu3}197.4Cu-2.1Ni-0.5Si

40

191

-

(Cu96.7Ni2.2Si1.1)

11

{[(Ni2/3Si1/3)-Cu12]Cu3}2+

{[Cu-Cu12]Cu3}3

98.1Cu-1.5Ni-0.4Si

48

172

0.278

(Cu97.5Ni1.7Si0.8)
Table 2  The cluster formula, composition, electrical conductivity, Vickers hardness and full-width half-maximum (FWHM) of the design Cu-Ni-Si alloys
Fig.2  XRD spectra of the Cu-Ni-Si alloys after ageing at 450 ℃ for 4 h
Fig.3  OM images of Cu-Ni-Si alloys after ageing at 450 ℃ for 4 h
Fig.4  Bright-field TEM images (a, c) and corresponding SAED parrerns (b, d) of No.9 (a, b) and No.10 (c, d) alloys after ageing at 450 ℃ for 4 h
Fig.5  The variations of Vickers hardness (a) and electrical conductivity (b) with atomic fraction of Cu (CCu) of Cu-Ni-Si alloys after ageing at 450 ℃ for 4 h
[1] Li S H, Li Z, Lei Q ,et al. Microstructure and properties of superhigh strength Cu-Ni-(Al)-Si Alloy [J]. Rare Met. Mater. Eng., 2015, 44: 1427
[1] (黎三华, 李 周, 雷 前等. 高强度Cu-Ni-(Al)-Si合金的组织和性能 [J]. 稀有金属材料与工程, 2015, 44: 1427)
[2] Roy D, Atwater M A, Youssef K ,et al. Studies on thermal stability, mechanical and electrical properties of nano crystalline Cu99.5Zr0.5 alloy [J]. J. Alloys Compd., 2013, 558: 44
[3] Azimi M, Akbari G H. Characterization of nano-structured Cu-6 wt.%Zr alloy produced by mechanical alloying and annealing methods [J]. J. Alloys Compd., 2013, 555: 112
[4] Suzuki S, Shibutani N, Mimura K,et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling [J]. J. Alloys Compd., 2006, 417: 116
[5] Huang B Y, Li C G, Shi L K ,et al. Nonferrous Materials Manual [The First Volume] [M]. Beijing: Chemical Industry Press, 2009: 256
[5] (黄伯云, 李成功, 石力开等. 有色金属材料手册[上] [M]. 北京: 化学工业出版社, 2009: 256)
[6] Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. J. Mater. Sci., 1994, 29: 218
[7] Lei Q, Li Z, Pan Z Y ,et al. Dynamics of phase transformation of Cu-Ni-Si alloy with super-high strength and high conductivity during aging [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1006
[8] Lei Q, Li Z, Dai C, et al. Effect of aluminum on microstructure and property of Cu-Ni-Si alloys [J]. Mater. Sci. Eng., 2013, A572: 65
[9] Hume-Rothery W, Raynor G V. The equilibrium and lattice-spacing relations in the system magnesium-cadmium [J]. Proc. Roy. Soc., 1940, 174A: 471
[10] Bagariatskii I A, Nosova G I, Tagunova T V. Factors in the formation of metastable phases in titanium-base alloys [J]. Sov. Phys. Dokl., 1958, 3: 1014
[11] Hall E O, Algie S H. The sigma phase [J]. Metall. Rev., 1966, 11: 61
[12] Morinaga M, Yukawa N, Adachi H. Alloying effect on the electronic structure of BCC Fe [J]. J. Phys., 1985, 15F: 1071
[13] Yu R H. The empirical electron theory of solids and molecules [J]. Chin. Sci. Bull., 1978, 23: 217
[14] Bania P J. Beta Titanium Alloys in the 1990's [M]. Warrendale, PA: TMS, 1993: 147
[15] Zeng W D, Shu Y, Zhou Y G. Artificial neural network model for the prediction of mechanical properties of Ti-10V-2Fe-3Al titanium alloy [J]. Rare Met. Mater. Eng., 2004, 33: 1041
[16] Reddy N S, Lee Y H, Park C H, et al. Prediction of flow stress in Ti-6Al-4V alloy with an equiaxed α+β microstructure by artificial neural networks [J]. Mater. Sci. Eng., 2008, A492: 276
[17] Nunes R, Adams J H, Ammons M, et al. ASM Handbook (Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials) [M]. Geauga: ASM International Press, 1990: 760
[18] Wang L, Sun S Y, Fu X Q, et al. Microstructure and properties of Cu-Ni-Si based alloys for lead frame [J]. J.Univ Southeast. (Nat. Sci. Ed.), 2005, 35: 729
[18] (汪 黎, 孙善扬, 付小琴等. Cu-Ni-Si基引线框架合金的组织和性能 [J]. 东南大学学报(自然科学版), 2005, 35: 729)
[19] Fan L, Liu P, Jia S G, et al. Progress in copper alloys for lead frame research [J]. Dev. Appl. Mater., 2008, 23(4): 101
[19] (范 莉, 刘 平, 贾淑果等. 铜基引线框架材料研究进展 [J]. 材料开发与应用, 2008, 23(4): 101)
[20] Zhang Y, Lu M M, Hu Y Y, et al. Development and study of Cu-Ni-Si alloy for lead frame [J]. Shanghai Nonferrous Met., 2014, 35: 177
[20] (张 英, 陆萌萌, 胡艳艳等. 引线框架用Cu-Ni-Si合金的发展及研究现状 [J]. 上海有色金属, 2014, 35: 177)
[21] Novelty M L. Electronic Materials Handbook: Packaging, Vol.1 [M]. Novelty: ASM International, 1989: 1126
[22] Furukawa Electric. High Performance Copper Alloys for Leadframe [EB/OL] http://www.furukawa.co.jp/product/catalogue/pdf/ leadframe_s133.pdf
[23] Tummala R R, Rymaszewski E J, Klopfenstein A G. Microelectronics Packaging Handbook: Semiconductor Packaging (PartⅡ) [M]. Boston, Dordrecht, London: Kluwer Academic Publishers, 2004: 428
[24] Mitsubishi Shindoh Co., Ltd. MAX Series [EB/OL]. http://www.mitsubishi-shindoh.com/en/products/material/max.html
[25] Industries PMX, Inc.Alloy C7026[EB/OL]. http://www.ipmx.com/high/pdf/C7026.pdf
[26] Industries PMX, Inc. Alloy C19010 [EB/OL]. http://www.ipmx.com/high/pdf/19010blue.pdf
[27] Zhang X N, Wang Q, Chen B,et al. Influence of the amount of solute elements (Ni, Sn) on the electrical conductivity of Cu-Ni-Sn alloys [J]. Mater. Rev., 2015, 29(18): 13
[27] (张显娜, 王 清, 陈 勃等. 溶质元素(Ni, Sn)总量对Cu-Ni-Sn合金导电性能的影响 [J]. 材料导报, 2015, 29(18): 13)
[28] Dong C, Wang Q, Qiang J B ,et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40DR273
[29] Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293
[29] (董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293)
[30] Hong H L, Wang Q, Dong C, et al. Understanding the Cu-Zn brass alloys using a short-range-order cluster model: Significance of specific compositions of industrial alloys [J]. Sci. Rep., 2014, 4: 7065
[31] Pang C, Wang Q, Zhang R Q ,et al. β Zr-Nb-Ti-Mo-Sn alloys with low Young?s modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model [J]. Mater. Sci. Eng., 2015, A626: 369
[32] Wang Z R, Qiang J B, Wang Y M ,et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
[33] Wang Q, Ma Y, Jiang B B, et al. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties [J]. Scr. Mater., 2016, 120: 85
[34] Li D M, Wang Q, Jiang B B, et al. Minor-alloyed Cu-Ni-Si alloys with high hardness and electric conductivity designed by a cluster formula approach [J]. Prog. Nat. Sci., 2017, 27: 467
[35] Zhang Y, Wang Q, Dong H G ,et al. Nickel-based single-crystal superalloys (Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W) designed by cluster-plus-glue-atom model and their 1000 h long-term ageing behavior at 900 ℃ [J]. Acta Metall. Sin., 2018, 54: 591
[35] (张 宇, 王 清, 董红刚等. 基于团簇模型设计的镍基单晶高温合金(Ni, Co)-Al-(Ta, Ti)-(Cr, Mo, W)及其在900 ℃下1000 h的长期时效行为 [J]. 金属学报, 2018, 54: 591)
[36] Geng Y X, Wang Y M, Qiang J B ,et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459
[36] (耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459)
[37] Yamamoto K, Sasaki H, Odasin M ,et al. Development and characteristics of high strength lead frame material HCL 305 [J]. J.Jpn. Copper Brass Res. Assoc., 1999, 38: 204
[38] Jia L, Xie H, Lu Z L ,et al. Research on the optimization of Ni/Si atomic ratio for Cu-Ni-Si alloys with high strength and high electrical conductivity [J]. Mater. Sci. Forum, 2011, 695: 344
[39] Wang H S, Chen H G, Gu J W ,et al. Improvement in strength and thermal conductivity of powder metallurgy produced Cu-Ni-Si-Cr alloy by adjusting Ni/Si weight ratio and hot forging [J]. J. Alloys Compd., 2015, 633: 59
[40] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element [J]. Mater. Trans., 2005, 46: 2817
[41] Lee E, Euh K, Han S Z ,et al. Tensile and electrical properties of direct aged Cu-Ni-Si-x%Ti Alloys [J]. Met. Mater. Int., 2013, 19: 183
[42] Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of super high strength Cu-5.2Ni-1.2Si alloy [J]. Chin. J. Nonferrous Met., 2007, 17: 1821
[42] (潘志勇, 汪明朴, 李 周等. 超高强度Cu-5.2Ni-1.2Si合金的形变热处理 [J]. 中国有色金属学报, 2007, 17: 1821)
[43] Pan Z Y, Wang M P, Li Z, et al. Effect of trace elments on properties of Cu-Ni-Si alloy [J]. Mater. Rev., 2007, 21: 86
[43] (潘志勇, 汪明朴, 李 周等. 添加微量元素对Cu-Ni-Si合金性能的影响 [J]. 材料导报, 2007, 21: 86)
[44] Wang D F, Kang B X, Liu P ,et al. Development and application of materials [J]. Dev. Appl. Mater., 2003, 18(2): 4
[44] (王东锋, 康布熙, 刘 平等. Cu-Ni-Si合金的时效与析出研究 [J]. 材料开发与应用, 2003, 18(2): 4)
[45] Ren W, Jia S G, Liu P, et al. Effect of solution temperature on properties of Cu-Ni-Si alloy [J]. Hot Work. Technol., 2009, 38(8): 121
[45] (任 伟, 贾淑果, 刘 平等. 固溶温度对Cu-Ni-Si合金性能的影响 [J]. 热加工工艺, 2009, 38(8): 121)
[46] Gaskell P H. On the density of transition metal-metalloid glasses [J]. Acta Metall., 1981, 29: 1203
[47] Zhao D M, Dong Q M, Liu P ,et al. Structure and strength of the age hardened Cu-Ni-Si alloy [J]. Mater. Chem. Phys., 2003, 79: 81
[48] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 421
[48] (胡赓祥, 蔡 珣, 戎咏华. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 421)
[49] Tian S. Material Physical Properties [M]. Beijing: Beihang University Press, 2001: 39
[49] (田 莳. 材料物理性能 [M]. 北京: 北京航空航天大学出版社, 2001: 39)
[50] Xiao X P, Yi Z Y, Chen T T,et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy [J]. J. Alloys Compd., 2016, 660: 178
[1] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[2] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
[3] SHAO Yi , LI Yanmo , LIU Chenxi , YAN Zesheng , LIU Yongchang . Annealing Process Optimization of High Frequency Longitudinal Resistance Welded Low-CarbonFerritic Stainless Steel Pipe[J]. 金属学报, 2019, 55(11): 1367-1378.
[4] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[5] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[6] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
[7] Xianling HE,Gengwei YANG,Xinping MAO,Chibin YU,Chuanli DA,Xiaolong GAN. Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel[J]. 金属学报, 2017, 53(6): 648-656.
[8] Zhanxing CHEN,Hongsheng DING,Shiqiu LIU,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Effects of Direct Current on Microstructure and Properties of Ti-48Al-2Cr-2Nb Alloy[J]. 金属学报, 2017, 53(5): 583-591.
[9] Wenhui TONG,Zilong ZHAO,Xinyuan ZHANG,Jie WANG,Xuming GUO,Xinhua DUAN,Yu LIU. Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron[J]. 金属学报, 2017, 53(4): 472-478.
[10] Jin LIU,Yuanxia LAO,Yuan WANG. Effects of Cu on Microstructure and Mechanical Properties of AlN/TiN-Cu Nanocomposite Multilayers[J]. 金属学报, 2017, 53(4): 465-471.
[11] Chenliang WU,Song ZHANG,Chunhua ZHANG,Meng GUAN,Junzhe TAN. PHASE EVOLUTION OF FeCoCrAlCuNiMox COATINGS BY LASER HIGH-ENTROPY ALLOYING ON STAINLESS STEELS[J]. 金属学报, 2016, 52(7): 797-803.
[12] Bo HE,Qingwu NIE,Hongyu Zhang,Hua WEI. EFFECTS OF SOLUTION TREATMENT ON MICRO-STRUCTURE AND WEAR-RESISTANT PROPERTIES OF CoCrW ALLOYS[J]. 金属学报, 2016, 52(4): 484-490.
[13] Xiaowei ZUO,Rui GUO,Bailing AN,Lin ZHANG,Engang WANG. MICROSTRUCTURE, HARDNESS AND ELECTRICAL RESISTIVITY OF DIRECTIONALLY SOLIDIFIEDCu-6%Ag ALLOY UNDER A TRANSVERSE MAGNETIC FIELD[J]. 金属学报, 2016, 52(2): 143-150.
[14] Xiaolin LI,Zhaodong WANG,Xiangtao DENG,Yujia ZHANG,Chengshuai LEI,Guodong WANG. EFFECT OF FINAL TEMPERATURE AFTER ULTRA-FAST COOLING ON MICROSTRUCTURAL EVOLUTION AND PRECIPITATION BEHAVIOR OF Nb-V-Ti BEARING LOW ALLOY STEEL[J]. 金属学报, 2015, 51(7): 784-790.
[15] Ke ZHANG, Xinjun SUN, Qilong YONG, Zhaodong LI, Gengwei YANG, Yuanmei LI. EFFECT OF TEMPERING TIME ON MICROSTRUC- TURE AND MECHANICAL PROPERTIES OF HIGH Ti MICROALLOYED QUENCHED MARTENSITIC STEEL[J]. 金属学报, 2015, 51(5): 553-560.
No Suggested Reading articles found!