Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 118-122    DOI:
论文 Current Issue | Archive | Adv Search |
THE SINGLE EFFECT OF MICROBE ON THE CORROSION BEHAVIORS OF 45 STEEL IN SEAWATER OF TROPICAL OCEAN ENVIRONMENT
WU Jinyi1;2); XIAO Weilong1;2); CHAI Ke1;2); YANG Yuhui3)
1) Ministry of Education Key Laboratory of Application Technology of Hainan Superior Resources Chemical Materials; Material and Chemical Engineering College; Hainan University; Haikou 570228
2) Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources; Material and Chemical Engineering College; Hainan University; Haikou 570228
3) Agricultural College; Hainan University; Haikou 570228
Cite this article: 

WU Jinyi XIAO Weilong CHAI Ke YANG Yuhui. THE SINGLE EFFECT OF MICROBE ON THE CORROSION BEHAVIORS OF 45 STEEL IN SEAWATER OF TROPICAL OCEAN ENVIRONMENT. Acta Metall Sin, 2010, 46(1): 118-122.

Download:  PDF(869KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Biological elements have significant impact on lifetime prediction of marine carbon steel facilities. Microbe can produce pitting, crevice corrosion, selective dealloying and stress-oriented hydrogen-induce cracking, which accelerates both localized and average corrosion rates of carbon steel. The formation of microbe films can also reduce the steel corrosion rate through inhibition of oxygen diffusion and depletion of oxygen in the electrolyte and metal/solution interface. A comparing study of the corrosion behaviors of 45 steel in natural seawater and in sterile seawater in tropic condition shows that in most of immerging periods, the bacterial activity at the interface accelerates the average corrosion rate of the steel. However, when the corrosion time is 28 d, the biofilms inhibit the corrosion of 45 steel. The species and contents of microbe significantly influence the corrosion behavior of the steel. The microbe in the corrosion product mainly consists of Pseudomonas, Vibrio, Crenothrixandleptothrix, Thiobacillus, and Sulfate-reducing bacteria. The content of aerobe does not change with increasing the immerging time, but the content of anaerobe increases with increasing immerging time. The regular change of the content of microbe with the immerging time leads to the different microbe corrosion mechanisms for 45 steel.

Key words:  seawater      45 steel      microbe      corrosion     
Received:  27 February 2009     
ZTFLH: 

TG172.7

 
Fund: 

Supported by National Natural Science Foundation of China (No.50761004), Natural Science Foundation of Hainan Province (Nos.807011 and 80630), Project of the Education Department of Hainan Province (No.{\footnotesize\it Hj200706) and Foundation of Hainan University (Nos.Kyjj0536 and hd09xm77)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/118

[1] Little B, Wagner P. Mater Perform, 1997; 36(6): 40
[2] Little B, Wagner P. J Adhes, 1986; 20: 187
[3] Li X B, Wang W, Wang J, Liu W Y. Corros Sci Prot Technol, 2002; 14: 218
(李相波, 王伟, 王佳, 刘五一. 腐蚀科学与防护技术, 2002; 14: 218)

[4] Jung H G, Yoo J Y, Woo J S. ISIJ Int, 2003; 43: 1603
[5] Mathiyarasu J, Palaniswamy N, Muralidharan V S. Corros Rev, 2000; 18(1): 65
[6] Walsh D, Pope D, Danford M, Huff T. JOM, 1993; 45(9): 22
[7] Liu D Y, Wei K J, Li W J, Cao F Y. J Chin Soc Corros Prot, 2003; 23: 211
(刘大扬, 魏开金, 李文军, 曹付炎. 中国腐蚀与防护学报, 2003; 23: 211)

[8] Busalmen J P, V´azquez M, de S´anchez S R. Electrochim Acta, 2002; 47: 1857
[9] de Damborenea J J, Crist´obal A B, Arenas M A, L´opez V, Conde A. Mater Lett, 2007; 61: 821
[10] Crist´obal A B, Arenas M A, Conde A, de Damborenea J. Electrochim Acta, 2006; 52: 546
[11] Sand W. Int Biodeterior Biodegrad, 1997; 40: 183
[12] Mansfeld F, Little B. Corros Sci, 1991; 32: 247
[13] Buchanan R E, Gibbons N E. Bergey’s Manual of Determinative Bacteriology. 8th ed, Baltimore, Maryland: The Williams and Wilkins Company, 1974: 7
[14] Sreekumari K R, Nandakumar K, Takao K, Kikuchi Y. ISIJ Int, 2003; 43: 1799
[15] Little B, Wagner P, Mansfeld F. Electrochim Acta, 1992; 37: 2185
[16] Ponmariappan S, Maruthamuthu S, Palaniswamy N, Palaniappan R. Corros Rev, 2004; 22: 307

[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[4] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[7] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[8] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[9] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[10] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!