Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1117-1124    DOI:
论文 Current Issue | Archive | Adv Search |
SUPERPLASTICITY AND MICROSTRUCTURE EVOLUTION IN Mg-1.5Mn-0.3Ce ALLOY DEFORMED BY T-SHAPE CHANNEL PRESSING
KANG Zhixin; PENG Yonghui; SANG Jing; JIAN Weiwei; ZHAO Haidong; LI Yuanyuan
华南理工大学机械与汽车工程学院国家金属材料近净成形工程技术研究中心; 广州 510640
Cite this article: 

KANG Zhixin PENG Yonghui SANG Jing JIAN Weiwei ZHAO Haidong LI Yuanyuan. SUPERPLASTICITY AND MICROSTRUCTURE EVOLUTION IN Mg-1.5Mn-0.3Ce ALLOY DEFORMED BY T-SHAPE CHANNEL PRESSING. Acta Metall Sin, 2009, 45(9): 1117-1124.

Download:  PDF(2464KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg--1.5Mn--0.3Ce alloy was deformed by T-shape channel pressing (TCP) for four passes at 623 K, and the grain size is greatly refined from 35 μm to 2 $\mu$m, and a number of tiny Mg12Ce dispersively distributes in intragranular and intergranular regions. Superplastic deformation behavior of TCP deformed alloy was investigated at temperatures ranging from 573 K to 673 K and strain rates ranging from 1×10-1 s-1  to 4×10-4 s-1, and the microstructure evolution after tensile-to-failure was also analyzed. The experimental results indicated that the alloy deformed by TCP exhibits excellent superplasticity even in the condition of high strain rate at temperatures from 623 K to 673 K. The maximum elongation of 604 % is obtained at 673 K and a strain rate of 3×10-3 s-1, and its strain rate sensitivity m is 0.36. Grain boundary sliding is the primary mechanism of the superplastic deformation, and intragranular slip would become more obvious at lower strain rate and higher temperature, and plays an accommodated role in promoting grain boundary sliding during the deformation.

Key words:  Mg-1.5Mn-0.3Ce alloy      T-shape channel pressing      grain refinement      high strain rate     
superplasticity
      grain boundary sliding     
Received:  16 February 2009     
ZTFLH: 

TG146.22

 
  TG113

 
Fund: 

Supported by Science and Technology Development Program of Guangdong Province (No.2005B10301020)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1117

[1] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37
[2] Kang Z X, Mori K, Oishi Y. Surf Coat Technol, 2005; 195: 162
[3] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103
[4] Stolyarov V V, Zhu Y T, Lowe T C, Valiev R Z. Mater Sci Eng, 2001; A303: 82
[5] Guo Q, Yan H G, Chen Z H, Zhang H. Acta Metall Sin, 2006; 42: 739
(郭 强, 严红革, 陈振华, 张 辉. 金属学报, 2006; 42: 739)

[6] Jian W W, Kang Z X, Li Y Y. Chin J Nonferrous Met, 2008; 18: 1005
(简炜炜, 康志新, 李元元. 中国有色金属学报, 2008; 18: 1005)

[7] Mabuchi M, Higashi K. Mater Trans, 1999; 40: 787
[8] Kai M, Horita Z, Langdon T G. Mater Sci Eng, 2008; A488: 117
[9] Figueiredo R B, Langdon T G. Mater Sci Eng, 2006; A430: 151
[10] Watanabe H, Mukai T, Ishikawa K, Higashi K. Scr Mater, 2002; 46: 851
[11] Kang Z X, Jian W W, Ye Q, Xia W, Li Y Y. Chin Pat 200710030188.4, 2009
(康志新, 简炜炜, 叶 奇, 夏伟, 李元元. 中国发明专利, 200710030188.4, 2009)

[12] Jian W W, Kang Z X, Li Y Y. Trans Nonferrous Met Soc
Chin, 2007; 17: 1158
[13] Bussiba A, Ben–Artzy A, Shtechman A, Ifergan S, Kupiec
M. Mater Sci Eng, 2001; A302: 56
[14] Wang Q D, Wei Y H, Chino Y, Mabuchi M. Rare Met,
2008; 27: 46
[15] Langdon T G. Mater Sci Eng, 1994; A174: 225
[16] Mohri T, Mabuchi M, Nakamura M, Asahina T, Iwasaki
H, Aizawa T, Higashi K. Mater Sci Eng, 2000; A290: 139
[17] Wu X, Liu Y. Scr Mater, 2002; 46: 269
[18] Somekawa H, Hirai K, Watanabe H, Takigawa Y, Higashi
K. Mater Sci Eng, 2005; A407: 53
[19] Lin Z R. Principle and Application of Superplastic Forming
in Metals. Beijing: Aviation Industry Press, 1990: 8
(林兆荣. 金属超塑性成型原理及应用. 北京: 航空工业出版社, 1990: 8)

[20] Tan J C, Tan M J. Mater Sci Eng, 2003; A339: 124
[21] Liu R G, Jiang H M, Jiang Y, Peng F L, Yin F L, Zhang
H Z. Acta Metall Sin, 1996; 32: 1244
(刘润广, 蒋浩民, 姜 \ \ 勇, 彭福林, 尹福林, 张宏征. 金属学报, 1996; 32: 1244)

[22] Watanabe H, Mukai T, Mabuchi M, Higashi K. Scr Mater,
1999; 41: 209
[23] Mabuchi M, Higashi K. Philos Mag, 1996; 74: 887
[24] Mishra R S, Bieler T R, Mukherjee A K. Acta Mater, 1997;
45: 561
[25] Chen Z H, Liu J W, Chen D, Yan H G. Chin J Nonferrous
Met, 2008; 18: 193
(陈振华, 刘俊伟, 陈 \ \ 鼎, 严红革. 中国有色金属学报, 2008; 18: 193)

[1] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[2] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[3] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[4] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[5] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[6] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[9] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[10] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[11] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[12] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[13] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[14] Lili ZHANG, Hongxiang JIANG, Jiuzhou ZHAO, Lu LI, Qian SUN. A New Understanding Toward Effect of Solute Ti on Grain Refinement of Aluminum by Al-Ti-B Master Alloy: Kinetic Behaviors of TiB2 Particles and Effect of Solute Ti[J]. 金属学报, 2017, 53(9): 1091-1100.
[15] Zhiqiang ZHANG,Limin DONG,Shaoxuan GUAN,Rui YANG. Microstructure and Mechanical Properties of TC16 Titanium Alloy by Room Temperature Roller Die Drawing[J]. 金属学报, 2017, 53(4): 415-422.
No Suggested Reading articles found!