Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1111-1116    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF COOLING PROCESS AFTER ROLLING ON MICROSTRUCTURE AND YIELD RATIO OF HIGH--STRAIN PIPELINE STEEL X80
JIAO Duotian; CAI Qingwu; WU Huibin
National Engineering Research Center for Advanced Rolling Technology; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

JIAO Duotian CAI Qingwu WU Huibin. EFFECTS OF COOLING PROCESS AFTER ROLLING ON MICROSTRUCTURE AND YIELD RATIO OF HIGH--STRAIN PIPELINE STEEL X80. Acta Metall Sin, 2009, 45(9): 1111-1116.

Download:  PDF(1259KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of cooling process on microstructure of high-strain pipeline steel X80 with its low yield ratio has been examined by SEM and in situ TEM. The results illustrate that ferrite+bainite dual phase structure is obtained after proper relaxation and chilling down process, while the terminate temperature of relaxation is the decisive factor. When the stop temperature for relaxation ranges from 690 to 705 ℃, the combination of strength and ductility reaches the need for the use of X80 pipeline steel. The reduction of relaxation stop temperature results in increases of the volume of ferrite phase and grain size, which leads to lower yield ratio. Tensile test shows that the lower yield ratio mainly attributes to the cooperative deformation mechanism between soft ferrite and hard bainite.

Key words:  pipeline steel      high strain      yield ratio      relaxation      cooperative deformation     
Received:  16 February 2009     
ZTFLH: 

TG172.3

 
Fund: 

Supported by Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAE03A06)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1111

[1] Li H L, Li X, Ji L K. Weld Pipe Tube, 2007; 30(5): 6
(李鹤林, 李霄, 吉玲康. 焊管, 2007; 30(5): 6)

[2] Mohr W. Strain–based Design of Pipelines. Washinton: EWI, 2003: 10
[3] Ishikawa N, Parks D M, Socrate S, Kurihara M. ISIJ Int, 2000; 40: 1170
[4] Shen X P, Lei T Q, Liu J Z. Acta Metall Sin, 1987; 23: 151
(沈显璞, 雷廷权, 刘剑壮. 金属学报, 1987; 23: 151)

[5] Li L, Ding H, Wen J L, Song H M, Zhang P J. Chin J Mater Res, 2007; 21: 519
(李龙, 丁桦, 温景林, 宋红梅, 张丕军. 材料研究学报, 2007; 21: 519)

[6] Han B Q, Su Y. J Mater Proc Technol, 2003; 136: 102
[7] Tomotam Y, Umemoto I, Komatsubara O, Hiramatsu A, Nakajima N. ISIJ Int, 1992; 32: 343
[8] Endo S, Kurihara M, Suzuki N. Mater Jpn, 2000; 39: 167
[9] Ishikawa N, Endo S, Kondo J. JFE Technol Report, 2006; 7: 20
[10] KIM Y M, KIM S K, LIM Y J. ISIJ Int, 2002; 42: 1574
[11] Shikana N, Kagawa H, Kuriha M. ISIJ Int, 1992; 32: 337
[12] Huper T, Endo S, Ishikawa N. ISIJ Int, 1999; 39: 288
[13] Yu Q B, Zhao X P, Sun B. Iron Steel, 2007; 42: 76
(于庆波, 赵贤平, 孙 斌. 钢铁, 2007; 42: 76)

[14] Ma M T, Wu B R. Dual Phase Steel–Physics and Mechanical Metallurgy, Beijing: Metallurgical Industry Press, 1988: 72
(马鸣图, 吴宝榕. 双相钢-物理和力学冶金. 北京: 冶金工业出版社, 1988: 72)

[15] Li S X, Cui G R. J App Phy, 2007; 101: 083525–1
[16] Tang Z H, Waldo S. Mater Sci Eng, 2008; A408: 402
[17] Li H L, Guo S W, Feng Y R, Huo C Y, Chai H F. Microstructure Analysis and Metallograph Identification of High–strength Microalloying Pipelines Steel. Beijing: Petroleum Industry Press, 2001: 8
(李鹤林, 郭生武, 冯耀荣, 霍春勇, 柴惠芬. 高强度微合金管线钢显微组织分析与鉴别图谱. 北京: 石油工业出版社, 2001: 8)

[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[6] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[7] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] CHEN Fang,LI Yadong,YANG Jian,TANG Xiao,LI Yan. Corrosion Behavior of X80 Steel Welded Joint in Simulated Natural Gas Condensate Solutions[J]. 金属学报, 2020, 56(2): 137-147.
[10] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[11] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[12] Yadong LI,Qiang LI,Xiao TANG,Yan LI. Reconstruction and Characterization of Galvanic Corrosion Behavior of X80 Pipeline Steel Welded Joints[J]. 金属学报, 2019, 55(6): 801-810.
[13] Timing ZHANG, Weimin ZHAO, Wei JIANG, Yonglin WANG, Min YANG. Numerical Simulation of Hydrogen Diffusion in X80 Welded Joint Under the Combined Effect of Residual Stress and Microstructure Inhomogeneity[J]. 金属学报, 2019, 55(2): 258-266.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Weifeng HE, Xiang LI, Xiangfan NIE, Yinghong LI, Sihai LUO. Study on Stability of Residual Stress Induced by Laser Shock Processing in Titanium Alloy Thin-Components[J]. 金属学报, 2018, 54(3): 411-418.
No Suggested Reading articles found!