Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1083-1090    DOI:
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF GRAIN SIZE ON TWIP EFFECT IN A TWIP STEEL
WANG Shuhan; LIU Zhenyu; WANG Guodong
State Key Laboratory of Rolling and Automation; Northeastern University; Shenyang 110004
Cite this article: 

WANG Shuhan LIU Zhenyu WANG Guodong. INFLUENCE OF GRAIN SIZE ON TWIP EFFECT IN A TWIP STEEL. Acta Metall Sin, 2009, 45(9): 1083-1090.

Download:  PDF(1353KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TWIP (twinning induced plasticity) steels possess very high plasticity and high strength. It has been pointed out that deformation twinning plays an important role in controlling the deformation behavior, which divides grains into nano--scale layer--like structures to result in high strain-hardening rate or the so--called “TWIP” effect. The formation of deformation twins is affected by deformation temperature, strain rate, pr--deformation and grain size. The generation of deformation twins in austenitic steel with low stacking fault energy (SFE) is closely related to grain size. However, the relationship between strain hardening rate and grain size in TWIP steels has yet to be clarified, which is important for optimizing the parameters of solution treatments. In the present paper, the specimens of a typical TWIP steel with grain sizes of 7, 13, 30 and 63 μm were fabricated through solution treatments at different temperatures. Mechanical properties were measured by tensile tests, and microstructure evolution was observed by OM and TEM. The results show that the strain-hardening exponent rapidly increases with increasing true strain when it is less than 0.2, but levels off in the subsequent process of deformation. The relationship between strain hardening rate and true strain consists of two stages for the specimen with small grain size and three stages for the specimen with large grain size. Microstructure observation demonstrated that the number of deformation twins increases with the increase of grain size, induced to greater“TWIP”effect in the coarse-grained specimen than in the fine-grained specimen. This can be attributed to the dependence of the critical stress for formation of deformation twins on grain size of σTT0+KT}d-A.

Key words:  TWIP steel      grain size      strain hardening rate      strain hardening exponent      TWIP effect     
Received:  23 February 2009     
ZTFLH: 

TG115.213

 
Fund: 

Supported by National Natural Science Foundation of China (No.50873141) and National Basic Research Program of China (No.2004CB619108)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1083

[1] Frommeyer G, Br¨ux U, Neumann P. ISIJ Int, 2003; 43: 438
[2] Gr¨assel O, Kr¨uger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391
[3] Vercammen S, Blanpai B, Cooman B C D, Wollants P. Acta Mater, 2004; 52: 2005
[4] Bouaziz O, Guelton N. Mater Sci Eng, 2001; A319–321: 246
[5] Shiekhelsouk M N, Favier V, Inal K, Cherkaoui M. Int J Plast, 2009; 25: 105
[6] Christian J W, Mahajan S. Pro Mater Sci, 1995; 39: 1
[7] Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K. Scr Mater, 2008; 59: 963
[8] Danaf E E, Kalidindi S R, Doherty R D. Int J Plast, 2001; 17: 1245
[9] Lu L, Shen Y, Chen X, Qian L, Lu K. Science, 2004; 304: 422
[10] Kalidindi S R. Int J Plast, 1998; 14: 1265
[11] Danaf E E, Kalidindi S R, Doherty R D. Metall Mater Trans, 1999; 30A: 1223
[12] Xiong R G, Fu R Y, Li Q, ZhangM, Li L. Iron Steel, 2007; 42: 61
(熊荣刚, 符仁钰, 黎倩, 张 梅, 李 麟. 钢铁, 2007; 42: 61)

[13] Barbier D, Gey N, Allain S, Bozzolo N, Humbert M. Mater Sci Eng, 2009; A500: 196
[14] Sevillano J G. Scr Mater, 2008; 59: 135
[15] Meyers M A, V¨ohringer O, Lubarda V A. Acta Mater, 2001; 49: 4025
[16] Barnett M R. Scr Mater, 2008; 59: 696
[17] Allain S, Chateau J–P, Kahmoun K, Bouaziz O. Mater Sci Eng, 2004; A387–389: 272
[18] Allain S, Chateau J–P, Bouaziz O, Migot S, Guelton N. Mater Sci Eng, 2004; A387–389: 158

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[4] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[5] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[6] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
[7] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[8] HE Shuwen, WANG Minghua, BAI Qin, XIA Shuang, ZHOU Bangxin. Effect of TaC Content on Microstructure and Mechanical Properties of WC-TiC-TaC-Co Cemented Carbide[J]. 金属学报, 2020, 56(7): 1015-1024.
[9] LI Gen, LAN Peng, ZHANG Jiaquan. Solidification Structure Refinement in TWIP Steel by Ce Inoculation[J]. 金属学报, 2020, 56(5): 704-714.
[10] LI Jinxu,WANG Wei,ZHOU Yao,LIU Shenguang,FU Hao,WANG Zheng,KAN Bo. A Review of Research Status of Hydrogen Embrittlement for Automotive Advanced High-Strength Steels[J]. 金属学报, 2020, 56(4): 444-458.
[11] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[12] HUA Hanyu,XIE Jun,SHU Delong,HOU Guichen,Naicheng SHENG,YU Jinjiang,CUI Chuanyong,SUN Xiaofeng,ZHOU Yizhou. Influence of W Content on the Microstructure of Nickel Base Superalloy with High W Content[J]. 金属学报, 2020, 56(2): 161-170.
[13] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[14] Futao DONG,Fei XUE,Yaqiang TIAN,Liansheng CHEN,Linxiu DU,Xianghua LIU. Effect of Annealing Temperature on Microstructure, Properties and Hydrogen Embrittlement of TWIP Steel[J]. 金属学报, 2019, 55(6): 792-800.
[15] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
No Suggested Reading articles found!