Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 808-814    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu
TANG Lian; LU Lei
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

TANG Lian LU Lei. EFFECT OF TWIN LAMELLAR THICKNESS ON THE FATIGUE PROPERTIES OF NANO--TWINNED Cu. Acta Metall Sin, 2009, 45(7): 808-814.

Download:  PDF(1151KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue property of
metals is one of the most important concerns in industrial design.
It is affected by various factors, such as the microstructure,
mechanics and the environment. For the polycrystalline metallic
materials, grain boundaries (GBs) usually play an important role and
affect the fatigue behaviors significantly. GBs could strengthen
materials by blocking the motion of dislocations; meanwhile, the
stress concentration which is caused by the dislocations pile--up in
the vicinity of GBs would result in the initial fatigue crack
easily. As a special interface of low--energy, twin boundaries (TBs)
can strengthen materials by blocking the motion of dislocations in a
manner similar to that of GBs. Our studies have indicated that a
high density of nano--scale twin lamellae can provide the high
strength without significantly compromising ductility, which is
fundamentally different from that of GB strengthening. So far, most
studies of the TB--related fatigue and cracking behaviors are
concentrated on the twins with a thickness of few or tens
micrometers. The study of the TB--related fatigue behavior in
nanometer scale is rare. In this work, high--purity Cu specimens
with high density of nano--scale coherent TBs were synthesized by
means of the pulsed electro--deposition (PED). The twin lamellar
thickness dependence of fatigue life and fatigue endurance limit of
the nano--twinned Cu (nt--Cu) were studied by conducting
tension--tension fatigue tests under constant stress amplitude
control at room temperature. It is found that both the fatigue life
and fatigue endurance limit increase with the decrease of the twin
lamellar thickness. Postmortem SEM observations suggest a transition
in crack initiation site from shear bands (SBs) to TBs, when the
twin lamellar thickness is reduced from 85 to 32 nm. For the nt--Cu
samples with thick twin lamellae, the lattices accommodate the
plastic strain, which results in the SB cracking. For the nt--Cu
samples with thin twin lamellae, the abundant TBs accommodate the
plastic strain. The stress concentration along TBs which is caused
by the interactions of dislocation--TBs facilitates the fatigue cracking along TBs.

Key words:  Cu      twin boundary      fatigue crack      fatigue endurance limit      slip band      shear band     
Received:  31 March 2009     
ZTFLH: 

TG111.8

 
  TG146.11

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50571096, 50621091, 50725103 and 50890171) and National Basic Research Program of China (No.2005CB623604)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/808

[1] Thompson A W, Backofen W A. Acta Metall, 1971; 19: 597
[2] Lukas P, Kunz L. Mater Sci Eng, 1987; 85: 67
[3] Agnew S R, Vinogradov A Y, Hashimoto S, Weertman J R. J Electron Mater, 1999; 28: 1038
[4] Hoppel H W, Brunnbauer M, Mughrabi H, Valiev R Z, Zhilyaev A P. Proc Int Conf on Proc of Materialsweek 2000, Frankfurt, 2000, available from: http://www.materialsweek.org/proceedings
[5] Vinogradov A, Hashimoto S. Mater Trans, 2001; 42: 74
[6] Kunz L, Lukas P, Svoboda M. Mater Sci Eng, 2006; A424: 97
[7] Xu C, Wang Q, Zheng M, Li J, Huang M, Jia Q, Zhu J, Kunz L, Buksa M. Mater Sci Eng, 2008; A475: 249
[8] Wu S D,Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Mater Sci Eng, 2004; A387–389: 560
[9] Meyers M A, Chawla K K. Mechanical Behavior of Materials. Upper Saddle River, NJ 07458: Prentice Hall, Inc., 1999: 257
[10] Murr L E, Moin E, Greulich F, Staudhammer K P. Scr Metall, 1978; 12: 1031
[11] Shen Y F, Lu L, Lu Q H, Jin Z H, Lu K. Scr Mater, 2005; 52: 989
[12] Thompson N,Wadsworth N J, Louat N. Philos Mag, 1956; 1: 113
[13] Thompson N. In: Aversbach B L ed., Proc Int Conf on Atomic Mechanisms of Fracture, London: Chapman and Hall, 1959: 354
[14] Boettner R C, McEvily A J, Liu Y C. Philos Mag, 1964; 10: 95
[15] Wang Z R, Margolin H. Metall Trans, 1985; 16A: 873
[16] Hook R E, Hirth J P. Acta Metall, 1967; 15: 535
[17] Neumann P, Tonnessen A. In: Kettunen P O ed., Proc Int Conf on Strength of Metals and Alloys, Oxford: Pergamon Press, 1988: 743
[18] Qu S, Zhang P, Wu S D, Zang Q S, Zhang Z F. Scr Mater, 2008; 59: 1131
[19] Suresh S. Fatigue of Materials. Cambrige: Cambridge University Press, 1991: 134
[20] Chen X H, Lu L. Scr Mater, 2007; 57: 133
[21] Asaro R J, Kulkarni Y. Scr Mater, 2008; 58: 389
[22] Jin ZH,Gumbsch P,Ma E, Albe K, LuK, Hahn H, Gleiter H. Scr Mater, 2006; 54: 1163
[23] Hanlon T, Tabachnikova E D, Suresh S. Int J Fatigue, 2005; 27: 1147
[24] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[25] Lee C S, Duggan B J. Acta Metall Mater, 1994; 42: 857
[26] Mughrabi H, Hoppel HW. Proc Symposium Structure and Mechanical Properties of Nanophase Materials–Theory and Computer Simulation vs Experiment, Material Research Society Symposium Proceeding, vol. 634, Boston, 2000: B2.1.1
[27] Wu S D, Wang Z G, Jiang C B, Li G Y, Alexandrov I V, Valiev R Z. Scr Mater, 2003; 48: 1605
[28] Goto M, Han S Z, Yakushiji T, Lim C Y, Kim S S. Scr Mater, 2006; 54: 2101
[29] Zhang P, Duan Q Q, Li S X, Zhang Z F. Philos Mag, 2008; 88: 2487

[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[12] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[13] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[14] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[15] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
No Suggested Reading articles found!