Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (3): 363-368    DOI:
论文 Current Issue | Archive | Adv Search |
THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING II. Numerical Simulation and Experimental Validation
ZHU Wei; HAN Zhiqiang; LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
Cite this article: 

ZHU Wei HAN Zhiqiang LIU Baicheng. THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING II. Numerical Simulation and Experimental Validation. Acta Metall Sin, 2009, 45(3): 363-368.

Download:  PDF(1150KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the thermomechanical model and solution methodology described in Part I, a finite element program for simulating the solidification process of squeeze casting was developed. By using the program and a constitutive relationship based on Gleeble test data, the solidification processes of A356 aluminum alloy under different process parameters were simulated. Squeeze casting experiments were carried out for validating the developed model and program. It is shown that the results of numerical simulation are in good agreement with the experimental results.

Key words:  squeeze casting      thermomechanical coupling      numerical simulation      model validation      aluminum alloy     
Received:  12 June 2008     
ZTFLH: 

TG244.3

 
  O241.82

 
Fund: 

Supported by National Natural Science Foundation of China (No.50675113)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I3/363

[1] Qi P X. Spec Cast Nonferrous Alloys, 1998; (4): 32
(齐丕骧. 特种铸造及有色合金, 1998; (4): 32)

[2] Ghomashchi M R, Vikhrov A. J Mater Process Technol, 2000; 101: 1
[3] Luo S J, Chen B G, Qi P X. Liquid Forging and Squeeze Casting Technology. Beijing: Chemical Industry Press, 2007: 1
(罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术. 北京: 化学工业出版社, 2007: 1)

[4] Song Y Q, Liu Z B, Zhou D J. J Plast Eng, 1997; 4(3): 4
(宋玉泉, 刘助柏, 周大隽. 塑性工程学报, 1997; 4(3): 4)

[5] Han Z Q, Zhu W, Liu B C. Acta Metall Sin, 2009; 45: 356
(韩志强, 朱维, 柳百成. 金属学报, 2009; 45: 356)

[6] Hetu J F, Gao D M, Kabanemi K K. Adv Perform Mater, 1998; 5: 65
[7] Thermophysical Database, ProCast 2008, ESI Group, 2008
[8] Lin G Y, Zhang H, Guo W C, Peng D S. Chin J Nonferrous Met, 2001; 11: 412
(林高用, 张辉, 郭武超, 彭大暑. 中国有色金属学报, 2001; 11: 412)

[9] Yi Y P, Yang J H, Lin Y C. J Mater Eng, 2007; (4): 20
(易幼平, 杨积慧, 蔺永诚. 材料工程, 2007; (4): 20)

[10] Wang M J, Yang L B, Gan C L. J Huazhong Univ Sci Technol, 2003; 31(6): 20
(王孟君, 杨立斌, 甘春雷. 华中科技大学学报, 2003; 31(6): 20)

[11] Yuan G C, Han B, LiuW J. Mater Mech Eng, 2003; 27(8): 11
(袁鸽成, 韩冰, 刘文娟. 机械工程材料, 2003; 27(8): 11)

[12] Zhu W, Han Z Q, Jia Z Z, Zhao H D, Liu B C. Acta Metall Sin, 2008; 44: 163
(朱维, 韩志强, 贾湛湛, 赵海东, 柳百成. 金属学报, 2008; 44: 163)]

[13] Krishna P. PhD Thesis, The University of Michigan, 2001

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[9] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[10] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[11] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[12] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[13] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[14] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[15] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
No Suggested Reading articles found!