Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (11): 1558-1568    DOI: 10.11900/0412.1961.2020.00112
Current Issue | Archive | Adv Search |
Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research
GENG Yaoxiang1(), WANG Yingmin2
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2 Key Lab of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024, China
Cite this article: 

GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research. Acta Metall Sin, 2020, 56(11): 1558-1568.

Download:  HTML  PDF(2351KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-based amorphous alloys are well known for their excellent soft magnetic and mechanical properties such as high saturation magnetization (Bs), very low coercive force (Hc), high magnetic permeability (μ), low core loss, and high strength, and they are suitable for application as transformer-core materials and have potential applications as structural materials. The minor addition of early transition metal (ETM) such as Zr, Nb, Mo, Hf, Ta, or W can effectively improve the glass-forming abilities, thermal stability, soft magnetic and mechanical properties of Fe-based metallic glasses. The beneficial effects of the minor addition on the glass-forming ability can generally be classified into three aspects: (1) it favors the formation of the unique atomic dense configurations with small free volumes, strong liquid behavior, and high viscosity, which are significantly different from those for conventional metallic glasses; (2) it makes the melts energetically closer to the crystalline state than other metallic melts due to their high packing density in conjunction with a tendency to develop short-range order; (3) it makes the melts more viscous, which leads to slow crystallization kinetics. Despite these advantages, the fundamental theory about the mechanism of the minor addition of ETM in glass formation and properties tailoring is yet to be fully established. In this study, a "cluster plus glue atom" local structure model has been proposed to explore the local structure-property correlation of metallic glasses. The accessibility of calorimetric glass transition (Tg), glass-forming ability, thermal glass stability, and the mechanical properties of metallic glasses are explained in terms of the intra- and inter-atomic cluster correlations in the amorphous structures. Based on the local structure model, the Tg and its composition dependence micro-hardness and strength have been attributed to the inter-cluster correlation, and the enhancement of intra-cluster correlation due to minor alloying would contribute to the enhanced thermal glass stability. The experimental results were verified by alloying the Fe-B-based glassy alloy with Si and alloying the Fe-B-Si-based glassy alloy with ETMs (Zr, Hf, Nb, or Ta) and rare-earth metals (Y, Ce, Pr, Nd, Sm, Gd, or Dy). The experimental results correspond well with theoretical analysis. This study provides a novel understanding of the local structure-property correlation and minor alloying beneficial effects on amorphous alloys.

Key words:  Fe-based amorphous alloy      "cluster-plus-glue-atom" model      structure-property correlation      minor alloying mechanism      experimental verification     
Received:  09 April 2020     
ZTFLH:  TG139.8  
Fund: National Key Research and Development Program of China(2016YFB1100103);Natural Science Foundation for Young Scientists of Jiangsu Province(BK20180985);Natural Science Foundation in Higher Education of Jiangsu Province(18KJB430011)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00112     OR     https://www.ams.org.cn/EN/Y2020/V56/I11/1558

Fig.1  2-dimensional schematic of the 3-dimensional amorphous structure with a set of constituent atoms (The face center cubic-like arrays of atomic clusters are circled by black dotted lines, leaving behind the glue atoms in the octahedral sites)
Color online
Fig.2  Schematics of the intra- and inter-cluster correlations in the amorphous structures and the position of alloying atoms entering the model structure (C stand for the center atoms, S stand for the shell atoms, G stand for the glue atoms, A stand for the alloying atoms, subscripts 1 and 2 stand for their corresponding clusters)
Color online
(a) no minor alloying atom (b) minor alloying atom enters into the center position
(c) minor alloying atom enters into the shell position (d) minor alloying atom enters into the glue position
Fig.3  The equal-atomic ratio enthalpy of mixing (ΔH, kJ/mol) data of B, Si (a) and Fe (b) with the early transition metals (ETMs, Zr, Hf, Nb and Ta) and rare earth elements (RE, Y, Ce, Pr, Nd, Sm, Gd and Dy) (The Goldschmidt radii (nm) of these elements are also presented)
Color online
Fig.4  DSC curves of Fe-B and Fe-B-Si ternary amorphous ribbons (T—temperature) (a) and crystallization temperature (Tx) as a function of Si content (y) in [SiyB3-yFe]Fe cluster formula (b)
Fig.5  XRD spectra of the [Si-B2Fe8]Fe and [Si-B2Fe7.6RE0.4]Fe rod samples with diameter (D) of 1.0 mm (a), and the [Si-B2Fe7.6ETM0.4]Fe alloys with critical diameter for glass formation (Dc) (b)
Fig.6  DSC curves of [Si-B2Fe8]Fe, [Si-B2Fe7.6RE0.4]Fe (a) and [Si-B2Fe7.6ETM0.4]Fe (b) amorphous ribbons (Tg—glass transition temperature)
Cluster formulaCompositionDcTgTxVickers hardness
(atomic fraction / %)mmKKHV
[B-B2Fe8]FeFe75B25<1.0-712-
[(B0.4Si0.6)-B2Fe8]Fe (y=0.6)Fe75B20Si5<1.0-825-
[(B0.2Si0.8)-B2Fe8]Fe (y=0.8)Fe75B18.33Si6.67<1.0-833-
[Si-B2Fe8]Fe (y=1.0)Fe75B16.67Si8.33<1.0-839-
[Si-B1.8Si0.2Fe8]Fe (y=1.2)Fe75B15Si10<1.0-838-
[Si-B1.6Si0.4Fe8]Fe (y=1.4)Fe75B13.33Si11.67<1.0-832-
[Si-B2Fe7.6Y0.4]Fe (RE=Y)Fe71.67B16.67Si8.33Y3.33<1.0-923-
[Si-B2Fe7.6Dy0.4]Fe (RE=Dy)Fe71.67B16.67Si8.33Dy3.33<1.0-924-
[Si-B2Fe7.6Ce0.4]Fe (RE=Ce)Fe71.67B16.67Si8.33Ce3.33<1.0-902-
[Si-B2Fe7.6Nd0.4]Fe (RE=Nd)Fe71.67B16.67Si8.33Nd3.33<1.0-917-
[Si-B2Fe7.6Pr0.4]Fe (RE=Pr)Fe71.67B16.67Si8.33Pr3.33<1.0-914-
[Si-B2Fe7.6Sm0.4]Fe (RE=Sm)Fe71.67B16.67Si8.33Sm3.33<1.0-898-
[Si-B2Fe7.6Gd0.4]Fe (RE=Gd)Fe71.67B16.67Si8.33Gd3.33<1.0-921-
Cluster formulaCompositionDcTgTxVickers hardness
(atomic fraction / %)mmKKHV
[Si-B2Fe7.8Zr0.2]Fe (ETM=Zr, z=0.2)Fe73.33B16.67Si8.33Zr1.672.08398731120±9
[Si-B2Fe7.7Zr0.3]Fe (ETM=Zr, z=0.3)Fe72.50B16.67Si8.33Zr2.502.58468821131±7
[Si-B2Fe7.6Zr0.4]Fe (ETM=Zr, z=0.4)Fe71.67B16.67Si8.33Zr3.332.58518881149±7
[Si-B2Fe7.5Zr0.5]Fe (ETM=Zr, z=0.5)Fe70.83B16.67Si8.33Zr4.172.08548911145±8
[Si-B2Fe7.4Zr0.6]Fe (ETM=Zr, z=0.6)Fe70B16.67Si8.33Zr51.58689031156±7
[Si-B2Fe7.3Zr0.7]Fe (ETM=Zr, z=0.7)Fe69.17B16.67Si8.33Zr5.831.58759091170±10
[Si-B2Fe7.2Zr0.8]Fe (ETM=Zr, z=0.8)Fe68.33B16.67Si8.33Zr6.671.08789181184±8
[Si-B2Fe7.1Zr0.9]Fe (ETM=Zr, z=0.9)Fe67.5B16.67Si8.33Zr7.51.08909221195±13
[Si-B2Fe7.0Zr1.0]Fe (ETM=Zr, z=1.0)Fe66.67B16.67Si8.33Zr8.33<1.08959251197±15
[Si-B2Fe7.8Hf0.2]Fe (ETM=Hf, z=0.2)Fe73.33B16.67Si8.33Hf1.671.08408721115±13
[Si-B2Fe7.7Hf0.3]Fe (ETM=Hf, z=0.3)Fe72.50B16.67Si8.33Hf2.502.58528851121±19
[Si-B2Fe7.6Hf0.4]Fe (ETM=Hf, z=0.4)Fe71.67B16.67Si8.33Hf3.332.08548871153±8
[Si-B2Fe7.5Hf0.5]Fe (ETM=Hf, z=0.5)Fe70.83B16.67Si8.33Hf4.171.58588931138±9
[Si-B2Fe7.4Hf0.6]Fe (ETM=Hf, z=0.6)Fe70B16.67Si8.33Hf51.08619011168±8
[Si-B2Fe7.3Hf0.7]Fe (ETM=Hf, z=0.7)Fe69.17B16.67Si8.33Hf5.831.08709081174±9
[Si-B2Fe7.2Hf0.8]Fe (ETM=Hf, z=0.8)Fe68.33B16.67Si8.33Hf6.67<1.0876911-
[Si-B2Fe7.1Hf0.9]Fe (ETM=Hf, z=0.9)Fe67.5B16.67Si8.33Hf7.5<1.0886918-
[Si-B2Fe7.8Nb0.2]Fe (ETM=Nb, z=0.2)Fe73.33B16.67Si8.33Nb1.671.0-8611087±12
[Si-B2Fe7.7Nb0.3]Fe (ETM=Nb, z=0.3)Fe72.5B16.67Si8.33Nb2.52.08358691090±1
[Si-B2Fe7.6Nb0.4]Fe (ETM=Nb, z=0.4)Fe71.67B16.67Si8.33Nb3.332.58438731108±11
[Si-B2Fe7.5Nb0.5]Fe (ETM=Nb, z=0.5)Fe70.83B16.67Si8.33Nb4.172.58458811113±4
[Si-B2Fe7.4Nb0.6]Fe (ETM=Nb, z=0.6)Fe70B16.67Si8.33Nb52.08538851126±9
[Si-B2Fe7.3Nb0.7]Fe (ETM=Nb, z=0.7)Fe69.17B16.67Si8.33Nb5.831.58548951150±13
[Si-B2Fe7.2Nb0.8]Fe (ETM=Nb, z=0.8)Fe68.33B16.67Si8.33Nb6.671.58569021172±20
[Si-B2Fe7.1Nb0.9]Fe (ETM=Nb, z=0.9)Fe67.5B16.67Si8.33Nb7.51.58629111173±25
[Si-B2Fe7.0Nb1.0]Fe (ETM=Nb, z=1.0)Fe66.67B16.67Si8.33Nb8.331.58759171188±28
[Si-B2Fe6.8Nb1.2]Fe (ETM=Nb, z=1.2)Fe65B16.67Si8.33Nb101.0889930-
[Si-B2Fe7.8Ta0.2]Fe (ETM=Ta, z=0.2)Fe73.33B16.67Si8.33Ta1.67<1.0-858-
[Si-B2Fe7.7Ta0.3]Fe (ETM=Ta, z=0.3)Fe72.5B16.67Si8.33Ta2.5<1.0-865-
[Si-B2Fe7.6Ta0.4]Fe (ETM=Ta, z=0.4)Fe71.67B16.67Si8.33Ta3.331.08438731117±6
[Si-B2Fe7.5Ta0.5]Fe (ETM=Ta, z=0.5)Fe70.83B16.67Si8.33Ta4.171.08508841130±10
[Si-B2Fe7.4Ta0.6]Fe (ETM=Ta, z=0.6)Fe70B16.67Si8.33Ta51.08568891143±10
[Si-B2Fe7.3Ta0.7]Fe (ETM=Ta, z=0.7)Fe69.16B16.67Si8.33Ta5.831.08568911154±11
[Si-B2Fe7.2Ta0.8]Fe (ETM=Ta, z=0.8)Fe68.33B16.67Si8.33Ta6.67<1.0859896-
[Si-B2Fe7.1Ta0.9]Fe (ETM=Ta, z=0.9)Fe67.5B16.67Si8.33Ta7.5<1.0863910-
[Si-B2Fe7.0Ta1.0]Fe (ETM=Ta, z=1.0)Fe66.67B16.67Si8.33Ta8.33<1.0874913-
Table 1  Cluster formula, corresponding chemical compositions, Dc, Tg, Tx and Vickers hardnesses of amorphous alloys
Fig.7  Schematics of the anisotropic inter-atomic and inter-cluster correlation of Fe-B-Si (a), Fe-B-Si-ETM (b) and Fe-B-Si-RE (c) amorphous alloys
Color online
Fig.8  The changes of Tg and Tx (a) and Vickers hardness (b) with the ETMs (Zr, Hf, Nb and Ta) content (z) in [Si-B2Fe8-zETMz]Fe cluster formula
[1] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
[2] Nishizawa T. Thermodynamics of micro-alloying [J]. Mater. Trans., 2001, 42: 2027
[3] Greer A L. Grain refinement of alloys by inoculation of melts [J]. Phil. Trans. Roy. Soc. Lond., 2003, 361A: 479
[4] Wang W H. Roles of minor additions in formation and properties of bulk metallic glasses [J]. Prog. Mater. Sci., 2007, 52: 540
[5] Lu Z P, Liu C T. Role of minor alloying additions in formation of bulk metallic glasses: A review [J]. J. Mater. Sci., 2004, 39: 3965
[6] Xu D H, Duan G, Johnson W L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper [J]. Phys. Rev. Lett., 2004, 92: 245504
pmid: 15245096
[7] Ponnambalam V, Poon S J, Shiflet Gary J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter [J]. J. Mater. Res., 2004, 19: 1320
[8] Egami T. Magnetic amorphous alloys: Physics and technological applications [J]. Rep. Prog. Phys., 1984, 47: 1601
[9] Hasegawa R. Amorphous magnetic materials—A history [J]. J. Magn. Magn. Mater., 1991, 100: 1
[10] McHenry M E, Willard M A, Laughlin D E. Amorphous and nanocrystalline materials for applications as soft magnets [J]. Prog. Mater. Sci., 1999, 44: 291
[11] Suryanarayana C, Inoue A. Iron-based bulk metallic glasses [J]. Int. Mater. Rev., 2013, 58: 131
[12] Sadoc J F, Wagner C N J. Structure of Metallic Glasses [M]. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1983: 78
[13] Steeb S, Lamparter P. Structure of binary metallic glasses [J]. J. Non-Cryst. Solids, 1993, 156-158: 24
[14] Hasegawa R, Ray R. Iron-boron metallic glasses [J]. J. Appl. Phys., 1978, 49: 4174
[15] Sánchez F H, Zhang Y D, Budnick J I. Short-range order in a partially crystallized Fe0.86B0.14 amorphous alloy: A comparison between spin-echo NMR and Mössbauer-effect studies [J]. Phys. Rev., 1988, 38B: 8508
[16] Chien C L, Hasegawa R. Mössbauer study of glassy alloys (Fe-Mo)80B20 [J]. J. Appl. Phys., 1978, 49: 1721
[17] Polk D E. The structure of glassy metallic alloys [J]. Acta Metall., 1972, 20: 485
[18] Gu X J, Poon S J, Shiflet G J, et al. Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure [J]. Acta Metall., 2008, 56: 88
[19] Xia J H, Qiang J B, Wang Y M, et al. Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron [J]. Appl. Phys. Lett., 2006, 88: 101907
[20] Wang Y M, Wang Q, Zhao J J, et al. Ni-Ta binary bulk metallic glasses [J]. Scr. Mater., 2010, 63: 178
[21] Yuan L, Pang C, Wang Y M, et al. Understanding the Ni-Nb-Zr BMG composition from a binary eutectic Ni-Nb icosahedral cluster [J]. Intermetallics, 2010, 18: 1800
[22] Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: Composition rules of quasicrystals and bulk metallic glasses [J]. J. Phys., 2007, 40D: R273
[23] Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
[24] Cheng Y Q, Ma E. Atomic-level structure and structure-property relationship in metallic glasses [J]. Prog. Mater. Sci., 2011, 56: 379
[25] Sheng H W, Luo W K, Alamgir F M, et al. Atomic packing and short-to-medium-range order in metallic glasses [J]. Nature, 2006, 439: 419
doi: 10.1038/nature04421 pmid: 16437105
[26] Stillinger F H. Relaxation and flow mechanisms in "fragile" glass-forming liquids [J]. J. Chem. Phys., 1988, 89: 6461
[27] Ediger M D. Spatially heterogeneous dynamics in supercooled liquids [J]. Annu. Rev. Phys. Chem., 2000, 51: 99
pmid: 11031277
[28] Tanaka H. Two-order-parameter model of the liquid-glass transition. II. Structural relaxation and dynamic heterogeneity [J]. J. Non-Cryst. Solids, 2005, 351: 3385
[29] Geng Y X, Wang Y M, Wang Z R, et al. Formation and structure-property correlation of new bulk Fe-B-Si-Hf metallic glasses [J]. Mater. Des., 2016, 106: 69
[30] Kelton K F. Crystal nucleation in liquids and glasses [J]. Solid State Phys., 1991, 45: 75
[31] Spaepen F. A structural model for the solid-liquid interface in monatomic systems [J]. Acta Metall., 1975, 23: 729
[32] Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures [J]. Chem. Rev., 1948, 43: 219
[33] Schuh C A, Hufnagel T C, Ramamurty U. Mechanical behavior of amorphous alloys [J]. Acta Mater., 2007, 55: 4067
[34] Gao F M, He J L, Wu E D, et al. Hardness of covalent crystals [J]. Phys. Rev. Lett., 2003, 91: 015502
doi: 10.1103/PhysRevLett.91.015502 pmid: 12906547
[35] Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Prog. Mater. Sci., 2012, 57: 487
[36] Gaskell P H. Models for the structure of amorphous metals [A]. Beck H, Güntherodt H J.
Glassy Metal II. Topics in Applied Physics [M]. Berlin, Heidelberg: Springer-Verlag, 1983: 5
[37] Hasegawa R, Ray R. Iron-boron metallic glasses [J]. J. Appl. Phys., 1978, 49: 4174
[38] Geng Y X, Wang Y M, Qiang J B, et al. Composition formulas of Fe-B binary amorphous alloys [J]. J. Non-Cryst. Solids, 2016, 432: 453
[39] Carini J P, Basak S, Nagel S R, et al. The thermoelectric power of the metallic glass Ca0.8Al0.2 [J]. Phys. Lett., 1981, 81A: 525
[40] de Boer F R, Boom R, Mattens W C M, et al. Cohesion in Metals [M]. Amsterdam: North-Holland Publishing Co., 1989: 217
[41] Luborsky F E, Reeve J, Davies H A, et al. Effect of Fe-B-Si composition on maximum thickness for casting amorphous metals [J]. IEEE Trans. Magn., 1982, 18: 1385
[42] Gale W F, Totemeier T C. Smithells Metals Reference Book [M]. Oxford: Butterworth-Heinemann, 1992: 108
[43] Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys [J]. Acta Metall. Sin., 2016, 52: 1459
(耿遥祥, 王英敏, 羌建兵等. Fe-B-Si-Nb块体非晶合金的成分设计与优化 [J]. 金属学报, 2016, 52: 1459)
[44] Geng Y X, Wang Y M, Qiang J B, et al. Fe-B-Si-Zr soft magnetic bulk glassy alloys [J]. Intemetallics, 2015, 67: 138
[45] Geng Y X, Han K M, Wang Y M, et al. Composition design of Fe-B-Si-Ta bulk amorphous alloys based on cluster + glue atom model [J]. Acta Metall. Sin., 2015, 51: 1017
(耿遥祥, 韩凯明, 王英敏等. 基于团簇+连接原子模型的Fe-B-Si-Ta块体非晶合金的成分设计 [J]. 金属学报, 2015, 51: 1017)
[46] Chang H W, Huang Y C, Chang C W, et al. Soft magnetic properties and glass formability of Y-Fe-B-M bulk metals (M=Al, Hf, Nb, Ta, and Ti) [J]. J. Alloys Compd., 2009, 472: 166
[47] Li J W, Estévez D, Jiang K M, et al. Electronic-structure origin of the glass-forming ability and magnetic properties in Fe-RE-B-Nb bulk metallic glasses [J]. J. Alloys Compd., 2014, 617: 332
doi: 10.1016/j.jallcom.2014.07.222
[48] Zhang W, Jia X J, Li Y H, et al. Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass [J]. J. Appl. Phys., 2014, 115: 17A768
[49] Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels [J]. Phys. Rev. Lett., 2004, 92: 245503
doi: 10.1103/PhysRevLett.92.245503 pmid: 15245095
[50] Gao S F, Qiu J L, Yu P, et al. Fe-based bulk metallic glasses: Brittle or ductile? [J]. Appl. Phys. Lett., 2014, 105: 161901
doi: 10.1063/1.4899124
[51] Cheung T L, Shek C H. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses [J]. J. Alloys Compd., 2007, 434-435: 71
doi: 10.1016/j.jallcom.2006.08.109
[52] Duan G, Lind M L, De Blauwe K, et al. Thermal and elastic properties of Cu-Zr-Be bulk metallic glass forming alloys [J]. Appl. Phys. Lett., 2007, 90: 211901
doi: 10.1063/1.2741050
[53] Zhang T, Men H, Pang S J, et al. Effects of a minor addition of Si and/or Sn on formation and mechanical properties of Cu-Zr-Ti bulk metallic glass [J]. Mater. Sci. Eng., 2007, A449-451: 295
[54] Li Y H, Zhang W, Dong C, et al. Formation and mechanical properties of Zr-Ni-Al glassy alloys with high glass-forming ability [J]. Intermetallics, 2010, 18: 1851
doi: 10.1016/j.intermet.2010.03.041
[1] Yaoxiang GENG,Zhijie ZHANG,Yingmin WANG,Jianbing QIANG,Chuang DONG,Haibin WANG,Ojied TEGUS. Structure-Property Correlation of High Fe-ContentFe-B-Si-Hf Bulk Glassy Alloys[J]. 金属学报, 2017, 53(3): 369-375.
[2] XU Min YI Jun QUAN Mingxiu WANG Yandong ZUO Liang. EFFECT OF Nb ON CRYSTALLIZATION KINETICS OF Fe-Co-Nd-B AMORPHOUS ALLOYS[J]. 金属学报, 2009, 45(1): 91-96.
[3] LI Jianmin;SUN Wensheng;QUAN Mingxiu; HU Zhuangqi(State Key Laboratory for RSA;Institute of Metal Research; Chinese Academy of Sciences;Shenyang 110015);WANG Yongzhong;QIAO Guiwen(Institute of Metal Research;Chinese Academy of Sciences;Shenyang 110015) (Manuscript received 1994-05-04;in revised form 1995-03-28). DUCTILE-BRITTLE TRANSITION OF(Fe_0.99)Mo_(0.01))_(78)Si_9B_(13) AMORPHOUS ALLOY[J]. 金属学报, 1995, 31(23): 493-498.
[4] YANG Huisheng; XIONG Xiaotao; XU Zuxiong; MA Ruzhang (University of Science and Technology Beijing); TU Guochao; ZHANG Jiaji (Institute of Metallurgy; Shoudu Iron and Steel Company). X-RAY DIFFRACTION STUDY ON CRYSTALLIZATION OF AMORPHOUS Fe (76.5)Cu_1Si_(13.5)B_9 ALLOY[J]. 金属学报, 1992, 28(11): 75-80.
No Suggested Reading articles found!