Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 183-188    DOI:
论文 Current Issue | Archive | Adv Search |
NUMERICAL ANALYSIS ON THE RESIDUAL DISTORTION OF Al ALLOY SHEET AFTER FRICTION STIR WELDING
YAN Dongyang 1; SHI Qingyu 1; WU Aiping 1; Juergen Silvanus 2; LIU Yuan 1; ZHANG Zenglei 1
1. Department of Mechanical Engineering; Tsinghua University; Beijing 100084
2. European Aeronautic Defence and Space Company Innovation Works; Munich 81663; Germany
Cite this article: 

YAN Dongyang SHI Qingyu WU Aiping Juergen Silvanus LIU Yuan ZHANG Zenglei. NUMERICAL ANALYSIS ON THE RESIDUAL DISTORTION OF Al ALLOY SHEET AFTER FRICTION STIR WELDING. Acta Metall Sin, 2009, 45(2): 183-188.

Download:  PDF(994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Although the residual distortion of 6056 Al alloy sheet after friction stir welding (FSW) is smaller than that after fusion welding, it is still a significant defect for the assembly and application of welded structure. In order to investigate and predict the residual distortion of Al alloy sheet after FSW, a 3D thermo–mechanical model was established based on experimental conditions to simulate the FSW process. In the model, heat input was computed based on the torque data measured during experiment, and heat transfer between welded sheet and fixtures was simplified in the way of convection, and the properties of 6056 Al alloy were considered as temperature function, and tool loads were taken into account during the mechanical analysis. The simulation results show that the distribution of longitudinal residual stress along the width of sheet is asymmetrical, and the residual distortion corresponds well with experimental results both in distortion pattern and deformation values on the whole sheet.

Key words:  friction stir welding      Al alloy      numerical simulation      residual distortion     
Received:  30 July 2008     
ZTFLH: 

TG404

 
Fund: 

Supported by National Natural Science Foundation of China (No.50875146) and High Technology Research and Development Program of China (No.2006AA04Z139)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/183

[1] Thomas W M, Nicholas E D, Needham J C, Murch M G, Templesmith P, Dawes C J. Gr Br Pat Appl No. 9 125978.8, 1991
[2] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1
[3] Tang W, Guo X, McClure J C, Murr L E. J Mater Process Manuf Sci, 1998; 7(2): 163
[4] Staron P, Kocak M. In: David S A, Debroy T, Lippold J C, Smartt H B, Vitek J M eds., Proc 6th Int Conf on Trends in Welding Research, Pine Mountain: ASM International, 2003: 216
[5] Song M, Kovacevic R. J Eng Manuf, 2003; 217(1): 73
[6] Colegrove P A, Shercliff H R. Sci Technol Weld Join, 2003; 8: 360
[7] Chao Y J, Qi X, Tang W. Trans ASME, 2003; 125: 138
[8] Shi Q Y, Dickerson T L, Shercliff H R. Proc 4th Int Symp on Friction Stir Welding, TWI Center, Park City, USA, 2003 (CD–ROM)
[9] Li T, Shi Q Y, Li H K. Sci Technol Weld Join, 2007; 12: 664
[10] Price D A, Williams S W, Wescott A, Harrison C J C, Rezai A, Steuwer A, Peel M, Staron P, Kocak M. Sci Technol Weld Join, 2007; 12: 620
[11] Shi Q Y, Silvanus J, Liu Y, Yan D Y, Li H K. Sci Technol Weld Join, 2008; 13: 472
[12] Chai P, Luan G H, Guo D L, Li J, Trans Chin Weld Inst, 2005; 26(11): 79
(柴 鹏, 栾国红, 郭德伦, 李菊. 焊接学报, 2005; 26(11): 79)
[13] Grimvall G. Thermophysical Properties of Materials: Non Metallic Solids. New York: Elsevier, 1999: 243
[14] Parrott J E, Stuckes A D. Thermal Conductivity of Solids. London: Pion, 1975: 156
[15] Preston R V. PhD Thesis, Cambridge University, 2000

[16] Zhu X K, Chao Y J. J Mater Process Technol, 2004; 146: 263
[17] Li H K. Postdoctoral Report, Tsinghua University, Beijing, 2007
[18] Wu C S. Numerical Analysis for Heat Transfer in Welding Process. Harbin: Harbin Institute of Technology Press, 1990: 95
武传松. 焊接热过程数值分析. 哈尔滨: 哈尔滨工业出版社, 1990: 95)
[19] Shi Q Y, Dickerson T L, Shercliff H R. In: David S A, DebRoy T, Lippold J C, Smartt H B, Vitek J M eds., Proc 6th Int Conf on Trends in Welding Research, Pine Mountain: ASM International, 2003: 247
[20] Dickerson T L, Shi Q Y, Shercliff H R. Proc 4th Int Symp On Friction Stir Welding, TWI Center, Park City, USA, 2003 (CD–ROM)
[21] Vuyst T, Dealvise L D. Proc 5th Int Symp on Friction Stir Welding, TWI Center, Park City, USA, 2004 (CD–ROM)
[22] Buffa G, Hua J, Shivpuri R, Fratini L. Mater Sci Eng,2006; A419: 389

[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[7] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[8] LIU Renci, WANG Peng, CAO Ruxin, NI Mingjie, LIU Dong, CUI Yuyou, YANG Rui. Influence of Thermal Exposure at 700oC on the Microstructure and Morphology in the Surface of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2022, 58(8): 1003-1012.
[9] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[10] CHEN Yuyong, YE Yuan, SUN Jianfei. Present Status for Rolling TiAl Alloy Sheet[J]. 金属学报, 2022, 58(8): 965-978.
[11] SUN Rongrong, YAO Meiyi, LIN Xiaodong, ZHANG Wenhuai, QIU Yunlong, HU Lijuan, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. Effect of Ti on the Corrosion Behavior of Fe22Cr5Al3Mo Alloy in 500oC Superheated Steam[J]. 金属学报, 2022, 58(5): 610-622.
[12] LIN Xiaodong, MA Haibin, REN Qisen, SUN Rongrong, ZHANG Wenhuai, HU Lijuan, LIANG Xue, LI Yifeng, YAO Meiyi. Corrosion Behaviors of Fe13Cr5Al4Mo Alloy in High-Temperature High-Pressure Water Environments[J]. 金属学报, 2022, 58(12): 1611-1622.
[13] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[15] ZHAO Lei, WANG Hui, YANG Lixia, CHEN Xuebin, LANG Runqiu, HE Linfeng, CHEN Dongfeng, WANG Haizhou. First Exploration of Hot Isostatic Pressing High-Throughput Synthesis on Fe-Co-Ni Combinatorial Alloy[J]. 金属学报, 2021, 57(12): 1627-1636.
No Suggested Reading articles found!