Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (6): 703-707     DOI:
Research Articles Current Issue | Archive | Adv Search |
PLE/NPLE transition temperature in γ→α transformation of Fe-C-Xi alloy under hot deformation condition
;;Zhaodong Li;
清华大学
Cite this article: 

Zhaodong Li. PLE/NPLE transition temperature in γ→α transformation of Fe-C-Xi alloy under hot deformation condition. Acta Metall Sin, 2008, 44(6): 703-707 .

Download:  PDF(1568KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this research the PLE(Partition Local Equilibrium)/NPLE(Negligible Partition Local Equilibrium) model has been introduced into the deformed system to describe the γ→α transformation of Fe-C-Xi alloy(Xi represents for one or several substitutional elements such as Mn, Si, Cr, etc). Based on a calculate method in static system which has been reported, a thermodynamic equation which suits the plastic deformed system is established under the orthoequilibrium model, to calculate the PLE-NPLE critical temperature. Isothermal γ→α transformation experiments have been conducted to a Fe-C0.073-Mn2.17-Si0.80-Cr0.88(wt%) steel under different temperatures after a process of hot deformation at 820℃and the critical temperature of PLE-NPLE is roughly mensurated. The experimental results correspond well with the calculated results and both of them reveal that deformation does heighten the critical temperature of PLE-NPLE, as for the tested steel in this paper, after a 40% nominal deformation at 820℃ by deformed rate of 0.5s-1, the critical temperature of PLE-NPLE in isothermal γ→α transformation has been heighten by nearly 10℃.
Key words:  Partition local equilibrium      ferrite transformation      hot deformation      local equilibrium      
Received:  26 October 2007     
ZTFLH:  TG111.3  
  TG113.21  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I6/703

[1]Purdy G R,Weihert D H,Kirkaldy J S.Trans TMS- AIME,1964;230:1025
[2]Coates D E.Metall Trans,1973;4A:2313
[3]Coates D E.Metall Trans,1972;3A:1203
[4]Coates D E.Metall Trans,1973;4A:1077
[5]Bowman F E.Trans ASM,1946;36:61
[6]Enomoto M.Trans ISIJ,1988;28:826
[7]Sheng G,Yang Z G.Acta Metall Sin,2007;43:349 (盛广,杨志刚.金属学报,2007;43:349)
[8]Gllmour J B,Purdy G R,Kirkaldy J S.Metall Trans, 1972;3A:3213
[9]Umemoto M,Tamura I,Otsuka H.Tetsu Hagan■,1982; 68(Suppl.):1384 (梅本实,田村今男,大冢秀幸.铁钢,1982;68(增刊):1384)
[10]Mecking H,Kocks U F.Acta Metall,1981;29:1865
[11]Yu Y N.Metallic Theory.Beijing:Metallurgial Industry Press,2000:295 (余永宁.金属学原理.北京:冶金工业出版社,2000:295)
[12]Xu Z Y.Heat Treat,2005;19(2):1 (徐祖耀.热处理,2005;19(2):1)
[13]Wang Q C,Yang Z G,Li Z D.Acta Metall Sin,2007;43: 344 (王启超,杨志刚,李昭东.金属学报.2007;43:344)
[14]Luo H W,Sietsma J,Van der Zwaag S.Metall Mater Trans,2004;35A:2789
[15]Lan Y J,Huang C J,Li D Z,Li Y Y.Acta Metall Sin, 2003;39:242 (兰勇军,黄成江,李■中,李依依.金属学报,2003;39:242)
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[3] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[4] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[5] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[6] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[9] MA Kai, ZHANG Xingxing, WANG Dong, WANG Quanzhao, LIU Zhenyu, XIAO Bolv, MA Zongyi. Optimization and Simulation of Deformation Parameters of SiC/2009Al Composites[J]. 金属学报, 2019, 55(10): 1329-1337.
[10] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[11] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[12] Hao CHEN, Congyu ZHANG, Jianing ZHU, Zenan YANG, Ran DING, Chi ZHANG, Zhigang YANG. Austenite/Ferrite Interface Migration and Alloying Elements Partitioning: An Overview[J]. 金属学报, 2018, 54(2): 217-227.
[13] Ming ZHANG, Guoquan LIU, Benfu HU. Effect of Microstructure Instability on Hot Plasticity During Thermomechanical Processing in PM Nickel-Based Superalloy[J]. 金属学报, 2017, 53(11): 1469-1477.
[14] Cunyu WANG,Ying CHANG,Jie YANG,Kunmin ZHAO,Han DONG. THE COMBINED EFFECT OF HOT DEFORMATION PLUS QUENCHING AND PARTITIONING TREATMENT ON MARTENSITE TRANSFORMATION OF LOW CARBON ALLOYED STEEL[J]. 金属学报, 2015, 51(8): 913-919.
[15] Xiaoyun YUAN, Liqing CHEN. HOT DEFORMATION AT ELEVATED TEMPERATURE AND RECRYSTALLIZATION BEHAVIOR OF A HIGH MANGANESE AUSTENITIC TWIP STEEL[J]. 金属学报, 2015, 51(6): 651-658.
No Suggested Reading articles found!