Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (4): 409-413     DOI:
Research Articles Current Issue | Archive | Adv Search |
High strength and high toughness heat-resistant martensitic steel produced by ECAP
;;
钢铁研究总院
Cite this article: 

. High strength and high toughness heat-resistant martensitic steel produced by ECAP. Acta Metall Sin, 2008, 44(4): 409-413 .

Download:  PDF(1260KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures and mechanical properties ofЭП866 martensite heat-resistant steel submitted to equal channel angular pressing (ECAP) for one pass and subsequent heat treatment were investigated. It was hound that most of the lath martensite has been broken, and the nano-precipitant distributed more uniformly after ECAP deformation. By annealing at 680℃ for 2h, the dislocation density decreased and a great deal of equiaxed subgrains with sizes of several hundred of nanometers were produced, which could be attributed to the dislocation recovery and recrystallization. The yield strength of the ECAPed sample increased significantly, but its ductility decreased a lot. After subsequent annealing treatment, the ductility of the ECAP steel can be improved to the level of initial state. Both the strength and static toughness of the steel after ECAP deformation and subsequent heat treatment can be increased simultaneously compared with those of initial state.
Key words:  heat-resistant steel      Equal Channel Angular Pressing (ECAP)      Strength      Plasticity      Static Toughness      
Received:  02 August 2007     
ZTFLH:  TG142.7  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I4/409

[1]Valiev R Z.Nature,2002;419:887
[2]Yong Q L.Second-Phase in Iron & Steel Materials.Bei- jing:Metallurgical Industry Press,2006:11 (雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006:11)
[3]Valiev R Z,Islamgaliev R K,Alexandrov I V.Prog Mater Sci,2000;45:103
[4]Huang C X,Wang K,Wu S D,Zhang Z F,Li G Y,Li S X.Acta Mater,2006;54:655
[5]Huang C X,Gao Y L,Yang G,Wu S D,Li G Y,Li S X. J Mater Res,2006;21:1687
[6]Fukuda Y,Ohishi K,Horita Z,Lang T G.Ultrafine Grained Steels.Tokyo:Iron and Steel Institute of Japan, 2001:156
[7]Gong Z H,Wang B F,Yang G.Spec Steel,2005;26(1):24 (龚志华,王宝峰,杨钢,特殊钢,2005;26(1):24)
[8]Zhao X C,Yao X C,Liu X Y.J Mater Sci Eng,2006;24: 396 (赵西成,姚筱春,刘晓燕.材料科学与工程学报,2006;24:396)
[9]Park K T,Kim Y S,Lee J G,Shin D H.Mater Sci Eng, 2000;A293:165
[10]Shin D H,Kim W G,Ahn J Y,Park K T,Kim N J.Metall Ital,2006;5:49
[11]Shin D H,Seo C W,Kim J,Park K T,Choo W Y.Scr Mater,2000;42:695
[12]Suc J Y,Kim H S,Park J W,Chang J Y.Scr Mater, 2001;44:677
[13]Chinh N Q,Horváth G,Horita Z,Langdon T G.Acta Mater,2004;52:3555
[14]Huang C X,Wu S D,Li G Y,Liu T,Jiang C B,Li S X. Acta Metall Sin,2004;40:1165 (黄崇湘,吴世丁,李广义,刘腾,姜传斌,李守新.金属学报,2004;40:1165)
[15]Hollomon J H.TMS AIME,1945;162:268
[16]William D,Callister J.Fundamentals of Materials Sci- ence and Engineering.New York:John Wiley & Sons Inc,2001:64
[17]Zhao Y H,Liao X Z,Sheng C,Ma E,Zhu Y T.Adv Mater, 2006;18:2280
[18]Cabibbo M,Evangelista E,Vedani M.Metall Mater Trans,2005;36A:1353
[19]Kim Y G,Hwang B,Lee S,Kim W G,Shin D H.J Korean Inst Met Mater,2005;43(1):16
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[8] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[14] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!