Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (10): 1082-1090     DOI:
Research Articles Current Issue | Archive | Adv Search |
Cite this article: 

. . Acta Metall Sin, 2007, 43(10): 1082-1090 .

Download:  PDF(994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The experimental steel is a kind of Nb、Ti complex microalloyed steel produced by using thin slab casting and direct rolling process. Comprehensive microstructural analyses were conducted and strengthening mechanisms were studied for its two hot rolled coils: coil 059 with higher yield strength and coil 066 with lower yield strength. The results show that both coils mainly consist of ferrite microstructure. The ferrite of coil 059 presents non-ploygonal ferrite morphology which is with finer grain size and higher dislocation density. Both coils have the same precipitation characters. A large number of complex star-like precipitates exist in both coils, which have an average size of 140~150nm and account for 50% Nb of the total. Ferrite grain refinement strengthening is the first mechanism contributing 43~46% to total yield strength. Precipitation strengthening effect is weak, whether in coil 059 with higher yield strength or in coil 066 with lower yield strength, which only accounts for 4~6% of total yield strength. Dislocation strengthening and grain refinement strengthening makes coil 059 with the higher yield strength.
Key words:  thin slab casting and direct rolling      strengthening mechanism      microalloying      microstructure      precipitat     
Received:  04 December 2006     
ZTFLH:  TG142.1  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I10/1082

[1]DeArdo A J,Garcia C I,Palmiere E J.ASM Handbook, Vol.4,Heat Treating,Materials Park,OH,ASM Interna- tional,1990:237
[2]Kang Y,Yu H,Wang K,Fu J,Liu D,Wang Z,Li L,Chen G.Proc Int Symp Thin Slab Casting Rolling,Guangzhou, China:The Chinese Society for Metals,2002:313
[3]Baker T N,Li Y,Wilson J A,Craven A J,Crowther D N. Mater Sci Technol,2004;20:720
[4]Wang R,Hua M,Zhang H,Carcia C I.HSLA Steels 2005, Sanya,China,The Chinese Scoiety for Metals,2005:292
[5]Thillou V.Basic Metal Processing Research Institute Re- port,University of Pittsburgh,PA,USA,1997
[6]Ma X.Phys Test Chem Anal.Part B:Chemical Analysis, 1985;21(4):215 (马翔.理化检验化学分册,1985;21(4):215)
[7]Jia Y H,Lu C F,Liu Q B.Metall Anal,2004;24(Suppl): 463 (贾云海,卢翠芬,刘庆斌.冶金分析,2004;24(Suppl):463)
[8]Honeycombe R W K,Smith G M.In:Gifkins R C ed., Int Conf ICSMA 6 Strength Met Alloy,Pergamon Press, 1982:407
[9]Garcia J E.Master Thesis,University of Pittsburgh,2002
[10]Jun H J,Kang K B,Park C G.Scr Mater,2003;49:1081
[11]Yong Q L,Ma M T,Wu B R.Microalloyed Steels—Physical and Mechanical Metallurgy.Beijing:China Ma- chine Press,1989:57 (雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金.北京:机械工业出版社,1989:57)
[12]Ashby M F.Strengthening Methods in Crystals.London: Applied Science Publishers Ltd,1971:137
[13]Gladman T,Dulieu D,Mcivor T D.Proc Int Conf Mi- croalloying'75,New York:Union Carbide Corporation, 1977:32
[14]Hong S G,Jun H J,Kang K B,Park C G.Scr Mater, 2003;48:1201
[15]Garcia C I,Ruiz-Aparicio A,Cho K,Ma Y,Graham C, Vazquez M,Ruiz-Aparicio L.Proc Int Syrup Thin Slab Casting Rolling,Guangzhou,China:The Chinese Society for Metals,2002:397
[16]Kothe A,Kunze J,Backmann G,Mickel C.Mater Sci Forum,1998;284-286:493
[17]Kneissl A C,Garcia C I,DeArdo A J.Proc Int Conf Processing,Microstructure and Properties Microalloyed Other Modern High Strength Low Alloy Steels,Warren- dale,PA:ISS,1991:145
[18]Kejian H,Baker T N.In:Baker T Ned.,Proc Conf Tita- nium Technol Microalloy Steel,London:The Inst Mater, 1997:115
[19]Craven A J,He K,Garvie L A J,Baker T N.Acta Mater, 2000;48:3857
[20]DeArdo A J,Marraccini R,Hua M J,Garcia C I.HSLA Steels 2005,Sanya,China,The Chinese Society for Met- als,2005:23
[21]Fernandez A I,Uranga P,Lopez B,Rodriguez-Ibabe J M. Mater Sci Eng,2003;A361:367
[22]Fernandez A I,Uranga P,Lopez B,Rodriguez-Ibabe J M. ISIJ Int,2000;40:893
[23]de Ardo A J.Conf Proc Niobium Science Technology.Or- lando,Florida,USA:Niobium.2001 Limited,2001:427
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
No Suggested Reading articles found!