Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (8): 879-882     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECT OF SUPERHEATING ON THE SUB-RAPID SOLIDIFIED MICROSTRUCTURE OF AISI 304 AUSTENITIC STAINLESS STEEL STRIP
;Jianchao Ma;Wenhui Tong
中国科学院金属研究所
Cite this article: 

Jianchao Ma; Wenhui Tong. EFFECT OF SUPERHEATING ON THE SUB-RAPID SOLIDIFIED MICROSTRUCTURE OF AISI 304 AUSTENITIC STAINLESS STEEL STRIP. Acta Metall Sin, 2007, 43(8): 879-882 .

Download:  PDF(606KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of superheating on the sub-rapid solidified microstructure of AISI 304 austenitic stainless steel strip cast by water-cooled copper mould casting was investigated. The results show that the solidified microstructure of the as-cast strip of AISI 304 stainless steel is composed of cellular austenite, columnar ferrite dendrite, and equiaxed ferrite dendrite, from the surface to the center of the strip, respectively. With the increase of superheating, both the primary arm spacing of cellular austenite and the secondary arm spacing of ferrite dendrite raise, while the delta ferrite fraction decreases. As the melt superheating raises, the supercooling of melt falls, then the cooling rate of melt decreases, resulting in the increase of dendritic arm spacing of austenite and delta ferrite. The decrease of cooling rate also accelerates the transformation from delta ferrite to austenite during the subsequent cooling process after solidification, leading to the reduction of residual delta ferrite fraction.
Key words:  stainless steel      superheating      dendritic arm spacing      residual ferrite      
Received:  12 February 2007     
ZTFLH:  TG142.1  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I8/879

[1]Kim S H,Moon H K,Kang T,Lee C S.Mater Sci Eng, 2003;A356:390
[2]L(?)ser W,Thiem S,Jurisch M.Mater Sci Eng,1993;A173: 323
[3]Spinelli J E,Tosetti J P,Santos C A,Spim J A,Garcia A.J Mater Process Technol,2004;150:255
[4]Strezov L,Herbertson J.ISIJ Int,1998;38:959
[5]Mizukami H,Suzuki T,Umeda T,Kurz W.Mater Sci Eng,1993;A173:363
[6]Hunter A,Ferry M.Scr Mater,2002;46:253
[7]Schubert T,L(?)ser W,Schinnerling S,B(?)cher I.Mater Sci Technol,1995;11:181
[8]Siegel U,Spies H J,Eckatein H J.Steel Res,1986;57:25
[9]Mizoguchi T,Miyazawa K.ISIJ Int,1995;35:771
[10]Brooks J A,Thompson A W.Int Mater Rev,1991;36:16
[11]Lippold J C,Savage W F.Weld J,1979;58(Suppl.):362
[12]Lee J H,Kim H C,Jo G Y,Kim S K,Shim J H,Liu S, Trivedi R.Mater Sci Eng,2005;A413-414:306
[13]Rajaaekhar K,Harendranath C S,Raman R,Kulkarni S D.Mater Charact,1997;38:53
[14]Umeda T,Okane T.Sci Technol Adv Mater,2001;2:231
[15]Mallik R K,Mehrotra S P.ISIJ Int,1993;33:595
[16]Gupta M,Sahai Y.ISIJ Int,2000;40:144
[17]Baldissin D,Battezzati L.Scr Mater,2006;55:839
[18]Lin Y C,Chen P Y.Mater Sci Eng,2001;A307:1656
[1] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[4] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] WEN Donghui, JIANG Beibei, WANG Qing, LI Xiangwei, ZHANG Peng, ZHANG Shuyan. Microstructure Evolution at Elevated Temperature and Mechanical Properties of MoNb-Modified FeCrAl Stainless Steel[J]. 金属学报, 2022, 58(7): 883-894.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] LUO Wenze, HU Long, DENG Dean. Numerical Simulation and Development of Efficient Calculation Method for Residual Stress of SUS316 Saddle Tube-Pipe Joint[J]. 金属学报, 2022, 58(10): 1334-1348.
[10] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
[11] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[12] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[13] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[14] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[15] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
No Suggested Reading articles found!