Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu
TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng;LI Xiaobo
中南大学材料科学与工程学院
Cite this article:
TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng; LI Xiaobo. Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu. Acta Metall Sin, 2006, 42(6): 565-571 .
Abstract Combining the One-Atom (OA) theory with Debye-Gruneisen model,
adopting the lattice stability parameters determined by CALPHAD method,
the temperature dependences of the atom states, atomic potentials and
vibrating energies, atomic volumes, bulk moduli and linear thermal
expansion coefficients of fcc- and metastable hcp- and bcc-Cu metals
in SGTE database of pure elements have been studied, and the results
show that the calculated electronic structure is accordant with that
of first principles; the electronic structures of fcc-, hcp- and bcc-Cu
are very close and the single bond radii of them are very close as well;
the order of atomic volumes of them is
Va(bcc)>Va(hcp)>Va(fcc), that of concentration of covalent electrons is
nc(fcc)>nc (hcp)>nc(bcc), that of atomic potential energies is
εp(fcc)<εp(hcp)<εp(bcc), and so the lattice stability is
δG(fcc)>δG(hcp)>δG(bcc); the increasing amplitude of atomic vibrating energy is 2 to 3 times
higher than that of potential energy during the elevation of temperature.
[1] Kaufman L, Bernstein H. Computer Calculation of Phase Diagram,. New York: Academic Press Inc., 1970: 1 [2] Saunders N, Miodownik A P. CALPHAD (Calculation of PhaseDiagrams): A Comprehensive Guide. New York: Pergamon, 1998: 1 [3] Dinsdale A T. CALPHAD, 1991; 15: 317 [4] Wang Y, Curtarolo S, Jiang C. CALPHAD, 2004; 28: 79 [5] Xie Y Q, Tao H J, Peng H J. Physica, 2005; 366B: 17 [6] Xie Y Q. Sci Chin, 1993; 36E: 90 [7] Xie Y Q. Trans Nonferrous Met Soc Chin, 1994; 4(3): 63 [8] Xie Y Q, Zhang X D, Zhao L Y. Sci Chin, 1993; 36A: 487 [9] Xie Y Q, Ma L Y, Zhang X D. Sci Chin, 1993; 36A: 612 [10] Xie Y Q. Ada. Metall Mater, 1994; 42: 3705 [11] Xie Y Q. Sci Chin, 1998; 41E: 146 [12] Xie Y Q, Zhang X D. Sci Chin, 1998; 41E: 157 [13] Xie Y Q, Zhang X D. Sci Chin, 1998; 41E: 225 [14] Xie Y Q, Zhang X D. Sci Chin, 1998; 41E: 348 [15] Xie Y Q, Peng K, Liu X B. Physica, 2004; 344B: 5 [16] Xie Y Q, Liu X B, Peng K. Physica, 2004; 353B: 15 [17] Xie Y Q, Peng H J, Liu X B. Physica, 2004; 362B: 1 [18] Yu F X, Xie Y Q, Nie Y Z. Trans Nonferrous Met Soc Chin, 2004; 14: 1041 [19] Xie Y Q. Acta Metall Sin, 1998; 34: 1233 (谢佑卿.金属学报, 1998;34:1233) [20] Xie Y Q, Zhang X D. Acta Metall Sin, 1994; 30: 531 (谢佑卿,张晓东.金属学报, 1994;30:531) [21] Guo Y Q, Yu R H, Zhang R L. J Phys Chem, 1998; 102B: 9 [22] Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press, 1960: 56 [23] Kirby R K, Hahn T A, Rothroch B D. American Institute of Physics Handbook. New York: McGraw-Hill Book Company, 1972: 4 [24] Eckardt H, Fritsche L, Noffke J. J Phys, 1984; 14F: 97 [25] Kittel C. Solid State Physics. New York: John Wiley and Sons. Inc., 1976: 55 [26] Ozolin V, Wolverton S C, Zunger A. Phys Rev, 1998; 57B: 6427 [27] Wei S H, Mbaye A A, Ferreira L G. Phys Rev, 1987; 36B: 4163 [28] Chen J R, Li C J. Phase Transitions of Solids in Metals and Alloys. Beijing: Metallurgical Industry Press, 1997: (陈景榕,李承基.金属与合金中的固态相变.北京:冶金工业 出版社,1997:8) [29] Zhang Z J. J Phys: Condens Matter, 1998; 10: L495M