Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (6): 565-571     DOI:
Research Articles Current Issue | Archive | Adv Search |
Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu
TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng;LI Xiaobo
中南大学材料科学与工程学院
Cite this article: 

TAO Huijin; XIE Youqing; PENG Hongjian; YU Fangxin; LIU Ruifeng; LI Xiaobo. Temperature Dependence of tom States and Physical Properties of fcc-, metastable hcp- and bcc- Cu. Acta Metall Sin, 2006, 42(6): 565-571 .

Download:  PDF(231KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Combining the One-Atom (OA) theory with Debye-Gruneisen model, adopting the lattice stability parameters determined by CALPHAD method, the temperature dependences of the atom states, atomic potentials and vibrating energies, atomic volumes, bulk moduli and linear thermal expansion coefficients of fcc- and metastable hcp- and bcc-Cu metals in SGTE database of pure elements have been studied, and the results show that the calculated electronic structure is accordant with that of first principles; the electronic structures of fcc-, hcp- and bcc-Cu are very close and the single bond radii of them are very close as well; the order of atomic volumes of them is Va(bcc)>Va(hcp)>Va(fcc), that of concentration of covalent electrons is nc(fcc)>nc (hcp)>nc(bcc), that of atomic potential energies is εp(fcc)<εp(hcp)<εp(bcc), and so the lattice stability is δG(fcc)>δG(hcp)>δG(bcc); the increasing amplitude of atomic vibrating energy is 2 to 3 times higher than that of potential energy during the elevation of temperature.
Key words:  Cu      electronic structure      Debye-Grüneisen model      
Received:  05 December 2005     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I6/565

[1] Kaufman L, Bernstein H. Computer Calculation of Phase Diagram,. New York: Academic Press Inc., 1970: 1
[2] Saunders N, Miodownik A P. CALPHAD (Calculation of PhaseDiagrams): A Comprehensive Guide. New York: Pergamon, 1998: 1
[3] Dinsdale A T. CALPHAD, 1991; 15: 317
[4] Wang Y, Curtarolo S, Jiang C. CALPHAD, 2004; 28: 79
[5] Xie Y Q, Tao H J, Peng H J. Physica, 2005; 366B: 17
[6] Xie Y Q. Sci Chin, 1993; 36E: 90
[7] Xie Y Q. Trans Nonferrous Met Soc Chin, 1994; 4(3): 63
[8] Xie Y Q, Zhang X D, Zhao L Y. Sci Chin, 1993; 36A: 487
[9] Xie Y Q, Ma L Y, Zhang X D. Sci Chin, 1993; 36A: 612
[10] Xie Y Q. Ada. Metall Mater, 1994; 42: 3705
[11] Xie Y Q. Sci Chin, 1998; 41E: 146
[12] Xie Y Q, Zhang X D. Sci Chin, 1998; 41E: 157
[13] Xie Y Q, Zhang X D. Sci Chin, 1998; 41E: 225
[14] Xie Y Q, Zhang X D. Sci Chin, 1998; 41E: 348
[15] Xie Y Q, Peng K, Liu X B. Physica, 2004; 344B: 5
[16] Xie Y Q, Liu X B, Peng K. Physica, 2004; 353B: 15
[17] Xie Y Q, Peng H J, Liu X B. Physica, 2004; 362B: 1
[18] Yu F X, Xie Y Q, Nie Y Z. Trans Nonferrous Met Soc Chin, 2004; 14: 1041
[19] Xie Y Q. Acta Metall Sin, 1998; 34: 1233 (谢佑卿.金属学报, 1998;34:1233)
[20] Xie Y Q, Zhang X D. Acta Metall Sin, 1994; 30: 531 (谢佑卿,张晓东.金属学报, 1994;30:531)
[21] Guo Y Q, Yu R H, Zhang R L. J Phys Chem, 1998; 102B: 9
[22] Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press, 1960: 56
[23] Kirby R K, Hahn T A, Rothroch B D. American Institute of Physics Handbook. New York: McGraw-Hill Book Company, 1972: 4
[24] Eckardt H, Fritsche L, Noffke J. J Phys, 1984; 14F: 97
[25] Kittel C. Solid State Physics. New York: John Wiley and Sons. Inc., 1976: 55
[26] Ozolin V, Wolverton S C, Zunger A. Phys Rev, 1998; 57B: 6427
[27] Wei S H, Mbaye A A, Ferreira L G. Phys Rev, 1987; 36B: 4163
[28] Chen J R, Li C J. Phase Transitions of Solids in Metals and Alloys. Beijing: Metallurgical Industry Press, 1997: (陈景榕,李承基.金属与合金中的固态相变.北京:冶金工业 出版社,1997:8)
[29] Zhang Z J. J Phys: Condens Matter, 1998; 10: L495M
[1] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[5] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[8] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[11] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[13] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[14] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[15] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
No Suggested Reading articles found!