Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 797-800     DOI:
Research Articles Current Issue | Archive | Adv Search |
HIGH-RESOLUTION TRANSMISSION ELECTRON MICROSCOPY OF LONG-PERIOD STACKING STRUCTURE IN Zr(CrV)2 LAVES PHASE
Jian Sun
上海交通大学材料学院
Cite this article: 

Jian Sun. HIGH-RESOLUTION TRANSMISSION ELECTRON MICROSCOPY OF LONG-PERIOD STACKING STRUCTURE IN Zr(CrV)2 LAVES PHASE. Acta Metall Sin, 2006, 42(8): 797-800 .

Download:  PDF(1199KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructures of annealed Zr(CrV)2 Laves-phase intermetallic compound were studied using high-resolution transmission electron microscope (HRTEM). The results show that annealed Zr(CrV)2 exhibits a lamellar microstructure under low magnification and character of long-period stacking structure as well. Further studies by HRTEM and Fast Fourier Transformation (FFT) indicate that the structure of annealed Zr(CrV)2 is C36 combined with eight-layer and six-layer long-period stacking structure. The effect of V on the stability of ZrCr2 Laves phase was finally discussed in this paper.
Key words:  alloying      long-period structure      high-resolution transmission electron microscopy      ZrCr2      
Received:  31 December 2005     
ZTFLH:  TG111.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/797

[1]Akiba E,Iba H.Intermetallics,1998;6:461
[2]Liu C T,Zhu J H,Brady M P,McKamey C G,Pike L M.Intermetallics,2000;8:1119
[3]Chu F,Pope D P.Mater Sci Eng,1993;A170:39
[4]Massalski T B,Murray J L,Bennett L H,Baker H.Binary Alloy Phase Diagram.Metals Park,OH:American Society for Metals,1986:882
[5]Cebhardt E,Rexer J,Petzow G Z.Metallkde,1967;58:534
[6]Shen Y S,Paasche O G.Trans Metall Soc AIME,1968;242:2241
[7]Kanazawa S,Kaneno Y,Inoue H,Kim W Y,Takasugi T.Intermetallics,2002;10:783
[8]Kumar K S,Hazzledine P M.Intermetallics,2004;12:763
[9]Meng X Y,Northwood D O.Metallography,1985;18:183
[10]Grujicic M,Tangrila S,Cavin O B,Porter W D,Hubbard C R.Mater Sci Eng,1993;A160:37
[11]Takasugi T,Yoshida M.J Mater Res,1998;13:2505
[12]Guo K X,Ye H Q,Wu Y K.The Application of Electron Diffraction Pattern in Crystallography.Beijing:Science Press,1983:371(郭可信,叶恒强,吴玉琨.电子衍射图在晶体学中的应用.北京:科学出版社,1983:371)
[13]Allen C W.In:Koch C C,Liu C T,Stoloff N S,eds.High Temperature Ordered lntermetallic Alloys,Vol.39,Pittsburgh,PA:Materials Research Society,1985:141
[14]Sun J,Jiang B.Philos Mag,2004;84:3133
[15]Stein F, Palm M,Sauthoff G.Intermetallics,2004;12:713
[16]Yao Q,Xing H,Sun J.Int Conf on Aerospace Materials,Beijing:Chinese Materials Research Society,2006
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[4] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[5] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[6] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[7] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[8] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[9] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[10] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[11] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[12] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[13] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[14] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[15] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
No Suggested Reading articles found!