Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 379-382     DOI:
Research Articles Current Issue | Archive | Adv Search |
FABRICATION OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS FOAM
QIU K Q
沈阳工业大学材料科学与工程学院
Cite this article: 

QIU K Q. FABRICATION OF Zr41.25Ti13.75Ni10Cu12.5Be22.5 BULK METALLIC GLASS FOAM. Acta Metall Sin, 2006, 42(4): 379-382 .

Download:  PDF(758KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A bulk metallic glass foam with a diameter of 8.1 mm and a length of 70 mm was fabricated by infiltrating Zr-based liquid metal into NaCl powder as a pattern in a few seconds and water quenching the pattern. Both the powders and the prealloyed charges were sealed in a U-turn quartz tube as a crucible and heated in two different temperature regions respectively in the electric resistance furnace. The sample fabricated is the largest in diameter up to now according to the literature. The X-ray diffraction and the scanning electron microscopy were used to check the amorphous nature and structure of the porous samples. The results show that the samples are consisted of amorphous phase and have good connectivity among the cells in the foam. The sizes of struts and the holes are largely smaller than 1mm. The density and porosity of the open-cellular bulk metallic glass are 3.63g/cm3 and 40.5% respectively. Porous bulk metallic glass is the most potential materials that will be used as biologic-transplant materials.
Key words:  porous metallic glass      infiltrating casting      
Received:  21 July 2005     
ZTFLH:  TG139  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/379

[1] Pan M X, Wang W H. Physics, 2002; 31: 453 (潘明祥,汪卫华.物理,2002;31:453)
[2] http://www.liquidmetal.com/applications/
[3] Qiu K Q, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallica, 2002; 10: 1283
[4] Qiu K Q, Wu X F, Wang A M, Zhang H F, Hu Z Q. Metall Mater Trans, 2003; 34A: 1147
[5] Schroers J, Veazey C, Johnson W L. Appl Phys Lett, 2003; 82: 370
[6] Brothers A H, Dunand D C. Appl Phys Lett, 2004; 84: 1108
[7] Apfel R E, Qiu N. J Mater Res, 1996; 11: 2916
[8] Wada T, Inoue A. Mater Trans, 2004; 45: 2761
[9] Wada T, Inoue A. Mater Trans, 2003; 44: 2228
[10] Brothers A H, Scheunemann R, DeFouw J D, Dunand D C. Scr Mater, 2005; 52: 33
[11] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342
[12] Conner R D, Johnson W L, Paton N E, Nix W D. J Appl Phys, 2003; 94: 904
[13] Liu P S. Introduction to Cellular Materials. Beijing: Tsinghua University Press, 2004: 300 (刘培生.多孔材料引论.北京:清华大学出版社,2004:300)
[14] Conner R D, Dandliker R B, Johnson W L. Acta Mater, 1998; 46: 6089
[15] Marchi S C, Brothers A H, Dunand D C. Mater Res Soc Symp Proc, 2003; 754: CC1.8.1
[16] Qiu K Q. PhD Dissertation, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang, 2002 (邱克强.中国科学院金属研究所博士学位论文,沈阳,2002)
[17] Dandliker R B, Conner R D, Johnson W L, J Mater Res, 1998; 13: 2896
[1] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[2] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[3] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[4] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] . Precipitation Strengthening in Titanium Alloys from First Principles Investigation[J]. 金属学报, 0, (): 0-0.
[7] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[8] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[9] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[10] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[11] YANG Qun, PENG Sixu, BU Qingzhou, YU Haibin. Revealing Glass Transition and Supercooled Liquid in Ni80P20 Metallic Glass[J]. 金属学报, 2021, 57(4): 553-558.
[12] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[13] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[14] PAN Jie, DUAN Fenghui. Rejuvenation Behaviors in Metallic Glasses[J]. 金属学报, 2021, 57(4): 439-452.
[15] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
No Suggested Reading articles found!