Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (3): 317-320     DOI:
Research Articles Current Issue | Archive | Adv Search |
Analysis of Electromagnetic Field During Out-phase Electromagnetic Continuous Casting
东北大学EPM实验室; 沈阳航空工业学院
Cite this article: 

. Analysis of Electromagnetic Field During Out-phase Electromagnetic Continuous Casting. Acta Metall Sin, 2006, 42(3): 317-320 .

Download:  PDF(265KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Numerical simulation of electromagnetic field and force field during electromagnetic continuous casting in hollow billets was carried out by ANSYS software in the paper. The simulation results show that the magnetic flux density is strong and distribution is even in tube ingot in out-phase electromagnetic field; Metal melt in the central section of the wall flows outer mold due to the electromagnetic force; Metal melt and initial skull near graphite were pushed by the electromagnetic force, which can avoid “hold core”, decrease friction, restrain segregation burl, and increase surface quality.
Key words:  electromagnetic field      numerical simulation      solidification      surface quality      
Received:  27 June 2005     
ZTFLH:  TG249.7  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I3/317

[1] Richter R T, Ekenes J M. JOM, 2004; 56: 10
[2] Kim S W, Hao H. Metall Mater Trans, 2003; 34A: 1537
[3] Zhang Q. Acta Phys Sin, 2003; 52: 2642 (张勤.物理学报,2003;52:2642)
[4] Dong J, Cui J Z. J Aeronaut Mater, 2003; 23: 16 (董杰,崔建忠.航空材料学报, 2003;23:16)
[5] Wang Z F. J Braz Soc Mech Sci Eng, 2005; 27: 325
[6] Zhang B J, Cui J Z. Chin J Nonferrous Met, 2002; 12: 112 (张北江,崔建忠.中国有色金属学报, 2002;12:112)
[7] Yang Y S. Acta Metall Sin, 1994; 30: B208 (杨院生.金属学报, 1994;30:B208)
[8] Harada H. Can Metall Q, 2000; 39: 307
[9] Li Q L. flare Met Mater Eng, 2004; 33: 429 (李丘林.稀有金属材料与工程, 2004;33:429)
[10] Oszkar B, Preis K. IEEE Trans Magn, 1989; 25: 3145
[11] Biro O. IEEE Trans Magn, 1988; 24: 102
[12] Zhang Q. J Northeast Univ, 2002; 23: 671 (张勤.东北大学学报,2002;23:671)
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[5] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[6] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[7] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[8] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[11] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[12] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[13] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[14] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[15] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
No Suggested Reading articles found!