Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (9): 909-914     DOI:
Research Articles Current Issue | Archive | Adv Search |
Simulation of Friction Heat Induced Phase Transformation in High Speed Train Wheel
SU Hang; JI Huaizhong; ZHANG Yongquan; YANG Caifu; LIU Tong
Division of Structural Material Research; Central Iron and Steel Research InstituteBeijing 100081;
Cite this article: 

SU Hang; JI Huaizhong; ZHANG Yongquan; YANG Caifu; LIU Tong. Simulation of Friction Heat Induced Phase Transformation in High Speed Train Wheel. Acta Metall Sin, 2004, 40(9): 909-914 .

Download:  PDF(11198KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the finite element analysis of wheel/rail friction and experimental data of the phase transformation in wheel steel, the mechanism of wheel thermal fatigue under high speed and heavy load conditions was simulated. The changes of temperature field under several operating conditions (loading, braking time, running speed) have been calculated, and its affection on phase transformation zone in wheel tread has been discussed. The peak temperature of contact zone may reach over austenitizing temperature under heavy load sliding. The depth of austenized zone may reach at 1mm under the wheel tread. The increase of sliding speed does not affect the depth of phase transformation zone, but increase the probability of phase transformation. Both the peak temperature and the size of phase transformation zone increased with increased loading.
Key words:  train wheel steel      tread spalling      phase transformation      
Received:  31 July 2003     
ZTFLH:  TG142.21  
  U260.331  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I9/909

[1] Xiao Y J.Chin Railway Sci,2000;21(1) :9 (肖彦君.中国铁道科学,2000;21(1) :9)
[2] Zheng W S,Liu H Y.Rolling Stock,2001;39(2) :19(郑伟生,刘会英.铁道车辆,2001;39(2) :19)
[3] Sun J. In: The Chinese Railway Society ed., Proc 12th IntWheelset Congress, Qingdao, 1998: 18
[4] Kisyelyev S N. Vestn Vses Nauchno-Issled Inst Zhelezn-odorozhn Transp, 1994; (7) : 13
[5] Vernersson T. Wear, 1999; 236: 96
[6] Vernersson T. Wear, 1999; 236: 106
[7] Orringer O, Gray D E. Theory Appl Fract Mech, 1995;23(1) : 55
[8] Cole I S, Griffiths J R. Metall Australas, 1985; 17(1) : 14
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[6] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[7] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[8] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[9] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[11] CHEN Xiang,CHEN Wei,ZHAO Yang,LU Sheng,JIN Xiaoqing,PENG Xianghe. Assembly Performance Simulation of NiTiNb Shape Memory Alloy Pipe Joint Considering Coupling Effect of Phase Transformation and Plastic Deformation[J]. 金属学报, 2020, 56(3): 361-373.
[12] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[13] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[14] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[15] Zhirong HE, Peize WU, Kangkai LIU, Hui FENG, Yuqing DU, Rongyao JI. Microstructure, Phase Transformation and Shape Memory Behavior of Chilled Ti-47Ni Alloy Ribbons[J]. 金属学报, 2018, 54(8): 1157-1164.
No Suggested Reading articles found!