Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (7): 979-997    DOI: 10.11900/0412.1961.2024.00290
Overview Current Issue | Archive | Adv Search |
Electromigration of Sn-Based Microbumps in Chip Interconnections of Integrated Circuits: From Physical Nature to Reliability Improvement
HUANG Mingliang(), WANG Shengbo, YOU Haichao, LIU Houlin, REN Jing, HUANG Feifei
Electronic Packaging Materials Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

HUANG Mingliang, WANG Shengbo, YOU Haichao, LIU Houlin, REN Jing, HUANG Feifei. Electromigration of Sn-Based Microbumps in Chip Interconnections of Integrated Circuits: From Physical Nature to Reliability Improvement. Acta Metall Sin, 2025, 61(7): 979-997.

Download:  HTML  PDF(3511KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With advancements in miniaturization and performance in advanced packaging technology, the diameter of Sn-based microbumps continues to shrink to the micrometer scale. Consequently, the current density passing through each solder bump increases exponentially as the radius reduces. This emphasizes the critical need to understand the behaviors and mechanisms of electromigration (EM) for the reliability evaluation and design of chip interconnects in integrated circuits. This study systematically summarizes and analyzes the physical nature, key influencing factors and research methods related to the electromigration of Sn-based microbumps. The EM characteristics during the solid-solid EM, including the polarity effect, reverse polarity effect and two-phase separation are reviewed. Similarly, the EM behaviors during the liquid-solid EM, including atomic migration, phase segregation, and phase dissolution, are systematically reviewed. The EM lifetime assessment models and their modifications are evaluated. Furthermore, this study summarizes methods to improve the EM reliability of Sn-based microbumps and outlines prospective research directions and analytical approaches to further improve their reliability in advanced electronic applications.

Key words:  electronic packaging      chip interconnection      Sn-based microbump      electromigration      reliability     
Received:  20 August 2024     
ZTFLH:  TN405  
Fund: National Natural Science Foundation of China(52350321);National Natural Science Foundation of China(U1837208);China Postdoctoral Science Foundation(2024M750313)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00290     OR     https://www.ams.org.cn/EN/Y2025/V61/I7/979

Axis

Resistivity

10-7 Ω·m

Coefficient of thermal expansion

10-6oC-1

Young's modulus

GPa

Diffusivity in β-Sn (150 oC)

cm2·s-1

Sn self-diffusivity (150 oC)

cm2·s-1

AgCuNi
a1.0115.4522.95.60 × 10-111.99 × 10-73.85 × 10-98.70 × 10-13
c1.5430.5068.93.13 × 10-98.57 × 10-61.17 × 10-44.71 × 10-13
Table 1  Anisotropic properties of β-Sn
Fig.1  Effect of anisotropy of β-Sn grains on electromigration (EM)-induced failure of microbumps[22] (PCB—printed circuit board, RD—rolling direction)
(a) cross-sectional images of the solder bumps
(b) the corresponding EBSD maps in RD (Numbers show the β-Sn grain numbers; insets show the β-Sn grain orient-ations and the corlorkey of β-Sn grains; the same in Figs.2 and 3)
Fig.2  β-Sn grain rotation in microbumps under EM[23] (IMC—intermetallic compound)
(a) 0 h (b) 150 h (c) 250 h (d) 350 h (e) 500 h (f) corresponding EBSD map in RD
Fig.3  Effect of anisotropy of β-Sn grains on the growth behavior of IMCs under EM[24]
(a) 200 h (b) 400 h (c) 600 h (d) 600 h (polished) (e) corresponding EBSD map in RD
Fig.4  EM-induced microstructural evolution of microbumps
(a) crack at the cathode[37] (b) hillocks at the anode[22]
Fig.5  In situ observations of reverse polarity effect during liquid-solid electromigration for the Cu/Sn-9%Zn/Cu interconnect using synchrotron radiation real-time imaging technology (a-i)[14]
Fig.6  In situ observations of migration behavior of Bi atoms during liquid-solid electromigration (L-S EM) for the Cu/Sn-58%Bi/Cu interconnect using synchrotron radiation real-time imaging technology (a-t)[18]
Fig.7  Current driven bonding (CDB) method based on the polarity effect during L-S EM[49]
(a) cross-sectional SEM image of (001) Cu/Cu6Sn5/polycrystalline Cu interconnects
(b) EBSD orientation image maps in RD for interconnect
Fig.8  Effect of UBM combination on EM reliability of solder bumps[88] (UBM—under bump metallization, OSP—organic solderability preservative, ENEPIG—electroless nickel electroless palladium immersion gold)
(a) Ni/SAC305/OSP (b) Ni/SAC305/ENEPIG
Fig.9  Nucleation of Sn droplets on the facets of single-crystal IMCs[95]
(a-c) typical α-CoSn3, PtSn4, and β-IrSn4 single crystals, respectively
(d) a typical example of Sn droplets solidified on the (001) facet of β-IrSn4
(e) summarized pole figures of β-Sn orientations with respect to the largest facets of α-CoSn3, PtSn4, and β-IrSn4
1 Gerardin M. De l'action de la pile sur les sels de potasse st de soude st sur les alliages soumis à la fusion ingée [J]. Comptes Rendus, 1861, 53: 727
2 Blech I A, Meieran E S. Direct transmission electron microscope observation of electrotransport in aluminum thin films [J]. Appl. Phys. Lett., 1967, 11: 263
3 Clement J J, Thompson C V. Modeling electromigration-induced stress evolution in confined metal lines [J]. J. Appl. Phys., 1995, 78: 900
4 Brandenburg S, Yeh S. Electromigration studies of flip chip bump solder joints [A]. Surface Mount International Conference and Exposition [C]. San Jose, CA: SMTA, 1998: 337
5 Tu K N. Recent advances on electromigration in very-large-scale-integration of interconnects [J]. J. Appl. Phys., 2003, 94: 5451
6 Tammaro M. Investigation of the temperature dependence in Black's equation using microscopic electromigration modeling [J]. J. Appl. Phys., 1999, 86: 3612
7 Yang D S, Huang Y L. Interfacial intermetallic compound modification to extend the electromigration lifetime of copper pillar joints [J]. Front. Mater., 2023, 9: 1080848
8 Li X M, Liu Z H, Li C, et al. Effects of trace elements Ag, Bi and Ni on solid-liquid electromigration interface diffusion in solder joints [J]. J. Electron. Mater., 2021, 50: 5312
9 Liu Y, Xu X, Xue Y X, et al. An in-situ experimental and simulation study on the electromigration behavior of SAC305 solder joints [J]. J. Adhes. Sci. Technol., 2024, 38: 3348
10 Ye S, Huang M L, Chen L D, et al. Failure mechanisms of Ni/Sn-3.0Ag-0.5Cu/OSP flip chip solder under high current stressing [A]. 12th International Conference on Electronic Packaging Technology and High Density Packaging [C]. Shanghai: IEEE, 2011: 1
11 Chen L D, Huang M L. Effect of electromigration on intermetallic compound formation in Cu/Sn/Cu interconnect [A]. 2009 International Conference on Electronic Packaging Technology & High Density Packaging [C]. Beijing: IEEE, 2009: 666
12 Wang F J, Liu L T, Li D Y, et al. Electromigration behaviors in Sn-58Bi solder joints under different current densities and temperatures [J]. J. Mater. Sci.: Mater. Electron., 2018, 29: 21157
13 Huang M L, Zhang Z J, Zhao N, et al. In situ study on reverse polarity effect in Cu/Sn-9Zn/Ni interconnect undergoing liquid-solid electromigration [J]. J. Alloys Compd., 2015, 619: 667
14 Huang M L, Zhang Z J, Zhao N, et al. A synchrotron radiation real-time in situ imaging study on the reverse polarity effect in Cu/Sn-9Zn/Cu interconnect during liquid-solid electromigration [J]. Scr. Mater., 2013, 68: 853
15 Huang M L, Zhang Z J, Zhao N, et al. Study on liquid-solid electromigration in Cu/Sn-9Zn/Cu interconnect using synchrotron radiation real-time in situ imaging technology [A]. 14th International Conference on Electronic Packaging Technology [C]. Dalian: IEEE, 2013: 126
16 Huang M L, Zhou Q, Zhao N, et al. Reverse polarity effect and cross-solder interaction in Cu/Sn-9Zn/Ni interconnect during liquid-solid electromigration [J]. J. Mater. Sci., 2014, 49: 1755
17 Huang M L, Feng X F, Zhao J F, et al. Cu-Ni cross-solder interaction in Cu/Sn-58Bi/Ni interconnect undergoing liquid-solid electromigration [J]. Chin. J. Nonferrous Met., 2015, 25: 967
黄明亮, 冯晓飞, 赵建飞 等. Cu/Sn-58Bi/Ni焊点液-固电迁移下Cu和Ni的交互作用 [J]. 中国有色金属学报, 2015, 25: 967
18 Zhang Z J, Huang M L. Abnormal migration behavior and segregation mechanism of Bi atoms undergoing liquid-solid electromigration [J]. J. Mater. Sci., 2019, 54: 7975
doi: 10.1007/s10853-019-03448-1
19 Zhang Z J, Huang M L. In situ observation of electromigration-induced anomalous precipitation of Ag3Sn phase in Ag-containing solder joints [J]. J. Electron. Mater., 2021, 50: 2111
20 Chen L D, Huang M L, Zhou S M. Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu and Cu/Sn/Ni interconnects [A]. 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: IEEE, 2010: 176
21 Zhang Z J. Liquid-solid electromigration behavior and mechanism of micro interconnect [D]. Dalian: Dalian University of Technology, 2016
张志杰. 微互连焊点液-固电迁移行为与机理研究 [D]. 大连: 大连理工大学, 2016
22 Huang M L, Zhao J F, Zhang Z J, et al. Role of diffusion anisotropy in β-Sn in microstructural evolution of Sn-3.0Ag-0.5Cu flip chip bumps undergoing electromigration [J]. Acta Mater., 2015, 100: 98
23 Huang M L, Sun H Y. Interaction between β-Sn grain orientation and electromigration behavior in flip-chip lead-free solder bumps [J]. Acta Metall. Sin., 2018, 54: 1077
黄明亮, 孙洪羽. 倒装芯片无铅凸点β-Sn晶粒取向与电迁移交互作用 [J]. 金属学报, 2018, 54: 1077
doi: 10.11900/0412.1961.2017.00426
24 Huang M L, Zhao J F, Zhang Z J, et al. Dominant effect of high anisotropy in β-Sn grain on electromigration-induced failure mechanism in Sn-3.0Ag-0.5Cu interconnect [J]. J. Alloys Compd., 2016, 678: 370
25 Xu K X, Fu X, Wang X J, et al. The effect of grain orientation of β-Sn on copper pillar solder joints during electromigration [J]. Materials, 2022, 15: 108
26 Li X, Gao L Y, Tao J L, et al. Detrimental angle range between c axis of Sn crystal and electron flow for the electromigration reliability of ball grid array devices [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 17877
27 Wang Y, Wang Y S, Ma L M, et al. Effect of Sn grain c-axis on Cu atomic motion in Cu reinforced composite solder joints under electromigration [J]. J. Electron. Mater., 2020, 49: 2159
28 Bashir M N, Butt S U, Mansoor M A, et al. Role of crystallographic orientation of β-Sn grain on electromigration failures in lead-free solder joint: An overview [J]. Coatings, 2022, 12: 1752
29 Shen Y A, Wu J A. Effect of Sn grain orientation on reliability issues of Sn-rich solder joints [J]. Materials, 2022, 15: 5086
30 Yuan H Y, Li C, Zhang H Z, et al. Revealing evolutions of intermetallics in a solder joint under electromigration: A quasi-in situ study combining 3D microstructural characterization and numerical simulation [J]. Appl. Phys. Lett., 2023, 123: 231904
31 Mohanram H, Kim Y, Ni G, et al. Control of solder microstructure stimulated by interface condition of the UBM/solder and enhancement of electromigration reliability [A]. 2023 IEEE 73rd Electronic Components and Technology Conference (ECTC) [C]. Orlando: IEEE, 2023: 1060
32 Tsai C P, Chiu C Y, Huang W C, et al. Single-grain Sn-rich micro-bump by reducing Sn undercooling with heterogeneous nucleation [J]. Mater. Lett., 2024, 357: 135729
33 Yuan H Y, Li C, Ma Z L, et al. A case study of intermetallic evolutions in a solder joint under electromigration using a novel experiment-simulation combined approach [A]. 24th International Conference on Electronic Packaging Technology (ICEPT) [C]. Shihezi City: IEEE, 2023: 1
34 Wang S B, Liu P, Cong S, et al. The Evolution of micro-voids in Sn37Pb solder joints under electromechanical coupling loading [J]. J. Electron. Mater., 2024, 53: 6448
35 Zhang Q K, An C W, Song Z L. Thermal cycling-electric current coupling damage mechanisms of SnAgCu/Cu solder joints under different temperature ranges [J]. J. Electron. Mater., 2024, 53: 2544
36 Li S L, Hang C J, Zhang W, et al. Current-induced solder evolution and mechanical property of Sn-3.0Ag-0.5Cu solder joints under thermal shock condition [J]. J. Alloys Compd., 2024, 970: 172519
37 Huang M L, Zhou S M, Chen L D, et al. Effect of electroless Ni-P consumption on the failure mechanism of solder joints during electromigration [J]. Acta Metall. Sin., 2013, 49: 81
doi: 10.3724/SP.J.1037.2012.00401
黄明亮, 周少明, 陈雷达 等. Ni-P消耗对焊点电迁移失效机理的影响 [J]. 金属学报, 2013, 49: 81
doi: 10.3724/SP.J.1037.2012.00401
38 Fu Z W, Wei Q R, Guo X T, et al. Influence of temperature and current stressing on Cu-Sn intermetallic compound growth characteristics of lead-free microbump [J]. Adv. Theory Simul., 2023, 6: 2200881
39 Huang J Q, Zhu Y H, Pan K H, et al. Polarity effect of interfacial intermetallic compounds of BGA structure Cu/Sn-52In/Cu solder joints during electromigration [J]. Intermetallics, 2024, 168: 108252
40 Chen L D, Huang M L, Zhou S M. Effect of electromigration on intermetallic compound formation in line-type Cu/Sn/Cu interconnect [J]. J. Alloys Compd., 2010, 504: 535
41 Zhang X F, Guo J D, Shang J K. Reverse polarity effect from effective charge disparity during electromigration in eutectic Sn-Zn solder interconnect [J]. J. Mater. Res., 2008, 23: 3370
42 Tu K N. Solder Joint Technology: Materials, Properties, and Reliability [M]. New York: Springer, 2007: 1
43 Liang S B, Jiang H, Huang J Q. Study on phase electromigration and segregation behavior of Cu-cored Sn-58Bi solder interconnects under electric current stressing [J]. J. Electron. Mater., 2024, 53: 1192
44 Chen W M, Zhang K K, Fan Y C, et al. Effect of electromigration on microstructure and properties of CeO2 nanopartical-reinforced Sn58Bi/Cu solder joints [J]. Sci. Rep., 2024, 14: 15693
45 Daghfal J P, Shang J K. Current-induced phase partitioning in eutectic indium-tin Pb-free solder interconnect [J]. J. Electron. Mater., 2007, 36: 1372
46 Huang M L, Zhang Z J, Zhao N, et al. Migration behavior of indium atoms in Cu/Sn-52In/Cu interconnects during electromigration [J]. J. Mater. Res., 2015, 30: 3316
47 Zhang Z J, Huang M L. Liquid-solid electromigration behavior of Cu/Sn-52In/Cu micro-interconnect [J]. Acta Metall. Sin., 2017, 53: 592
doi: 10.11900/0412.1961.2016.00499
张志杰, 黄明亮. Cu/Sn-52In/Cu微焊点液-固电迁移行为研究 [J]. 金属学报, 2017, 53: 592
doi: 10.11900/0412.1961.2016.00499
48 Zhang Z J, Huang M L. In situ study on liquid-solid electromigration behavior in Cu/Sn-37Pb/Cu micro-interconnect [J]. Acta Metall. Sin., 2020, 56: 1386
doi: 10.11900/0412.1961.2020.00009
张志杰, 黄明亮. 原位研究Cu/Sn-37Pb/Cu微焊点液-固电迁移行为 [J]. 金属学报, 2020, 56: 1386
doi: 10.11900/0412.1961.2020.00009
49 Huang M L, Zhang Z J, Yang F, et al. Novel growth of whole preferred orientation intermetallic compound interconnects for 3D IC packaging [A]. 2016 IEEE 66th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: IEEE, 2016: 1216
50 Huang M L, Zou L, Yin S Q. Electromigration behavior and mechanical properties of the whole preferred orientation intermetallic compound interconnects for 3D packaging [A]. 2018 IEEE 68th Electronic Components and Technology Conference (ECTC) [C]. San Diego: IEEE, 2018: 2041
51 Huang M L, Zou L. Effects of electromigration on microstructural evolution and mechanical properties of preferential growth intermetallic compound interconnects for 3D packaging [A]. 2019 IEEE 69th Electronic Components and Technology Conference (ECTC) [C]. Las Vegas: IEEE, 2019: 1774
52 Huang M L, Zhao N, Zhang Z J, et al. A preparation method and structure of full intermetallic compound (IMC) interconnects [P]. Chin Pat, 201510069883.6, 2016
黄明亮, 赵 宁, 张志杰 等. 一种全金属间化合物互连焊点的制备方法及结构 [P]. 中国专利, 201510069883.6, 2016)
53 Huang M L, Wu Y, Zhang S N, et al. A method to control crystal orientation and microstructure of full intermetallic compound (IMC) interconnects [P]. Chin Pat, 202010964080.8, 2020
黄明亮, 武 洋, 张诗楠 等. 一种控制全金属间化合物微互连焊点晶体取向及微观组织的方法 [P]. 中国专利, 202010964080.8, 2020)
54 Black J R. Electromigration failure modes in aluminum metallization for semiconductor devices [J]. Proc. IEEE, 1969, 57: 1587
55 Yao Y F, Gusak A M, Chen C, et al. Influence of Sn grain orientation on mean-time-to-failure equation for microbumps in 3D IC technology [J]. Scr. Mater., 2024, 250: 116175
56 Flores J, Panta S, Hadian F, et al. Changes in the microstructure and electrical resistance of SnBi-based solder joints during current stressing [J]. J. Electron. Mater., 2024, 53: 1299
57 Chen S, Wu Q S, Fu Z W, et al. Black equation of the electromigration lifetime for ceramic package with lead bumps and plastic package with lead-free bump [A]. 2020 21st International Conference on Electronic Packaging Technology (ICEPT) [C]. Guangzhou: IEEE, 2020: 1
58 Li Y R Y, Fu G C, Wan B, et al. A study on the effects of electrical and thermal stresses on void formation and migration lifetime of Sn3.0Ag0.5Cu solder joints [J]. Soldering Surf. Mount Technol., 2021, 34: 162
59 Ting L M, May J S, Hunter W R, et al. AC electromigration characterization and modeling of multilayered interconnects [A]. 31st Annual Proceedings Reliability Physics 1993 [C]. Atlanta: IEEE, 1993: 311
60 Liang S B, Kunwar A, Wei C, et al. Insight into the preferential grain growth of intermetallics under electric current stressing—A phase field modeling [J]. Scr. Mater., 2021, 203: 114071
61 Liang S B, Wei C, Kunwar A, et al. Phase field modelling combined with data-driven approach to unravel the orientation influenced growth of interfacial Cu6Sn5 intermetallics under electric current stressing [J]. Surf. Interfaces, 2023, 37: 102728
62 Zhao Z P, Zhang X M, Wu Z Z, et al. Competitive failure mechanism and load tolerance of solder joint under thermo-mechano-electrical coupling [J]. Mech. Mater., 2021, 163: 104104
63 Guo F, Wen T Y, Ma L M, et al. Electromigration damage analysis of BGA solder joint under high temperature and high current density [J]. J. Beijing Univ. Technol., 2021, 47: 1264
郭 福, 文廷玉, 马立民 等. 高温高电流密度下BGA焊点电迁移损伤 [J]. 北京工业大学学报, 2021, 47: 1264
64 Hu S H, Lin T C, Kao C L, et al. Effects of bismuth additions on mechanical property and microstructure of SAC-Bi solder joint under current stressing [J]. Microelectron. Reliab., 2021, 117: 114041
65 Mokhtar N Z M, Salleh M A A M, Zhang G M, et al. Tin whiskers formation in Sn0.7Cu0.05Ni1.5Bi under electro-migration stressing [J]. Acta Phys. Pol., 2020, 138A: 261
66 Lin Y X, Wang J Y, Chen C Y, et al. Effect of Ag additives on the consumption of a cathode Cu pad in a Cu/Sn3.5Ag/Cu flip-chip structure under electromigration [J]. J. Electron. Mater., 2021, 50: 6584
67 Liu H Y, Zhu Q S, Wang Z G, et al. Effects of Zn addition on electromigration behavior of Sn-1Ag-0.5Cu solder interconnect [J]. J. Mater. Sci.: Mater. Electron., 2013, 24: 211
68 Li M Y, Han J, Guo F, et al. Electromigration behavior of low-silver Sn-0.3Ag-0.7Cu-1.6Bi-0.2In solder joints [J]. J. Electron. Mater., 2020, 49: 4237
69 Kelly M B, Antoniswamy A, Mahajan R, et al. Effect of trace addition of In on Sn-Cu solder joint microstructure under electromigration [J]. J. Electron. Mater., 2021, 50: 893
70 Liu S F, Liu Z Y, Liu L, et al. Electromigration behavior of Cu/Sn-58Bi-1Ag/Cu solder joints by ultrasonic soldering process [J]. J. Mater. Sci.: Mater. Electron., 2020, 31: 11997
71 Zhao X, Saka M, Muraoka M, et al. Electromigration behaviors and effects of addition elements on the formation of a Bi-rich layer in Sn58Bi-based solders [J]. J. Electron. Mater., 2014, 43: 4179
72 Wu X F, Hou Z Z, Xie X C, et al. Microstructural evolution of joints with and without Sb, Ni in Sn58Bi solder under electro-thermal-force coupling [J]. J. Mater. Res. Technol., 2023, 26: 1382
73 Wu X F, Hou Z Z, Xie X C, et al. Mechanical properties and microstructure evolution of Sn-Bi-based solder joints by microalloying regulation mechanism [J]. J. Mater. Res. Technol., 2024, 31: 3226
74 Bashir M N, Khan N B, Bashir S, et al. Effect of Zn nanoparticle-doped flux on mechanical properties of SAC305 solder joint after electromigration [J]. J. Mater. Sci.: Mater. Electron., 2023, 34: 321
75 Bashir M N, Haseeb A S M A. Grain size stability of interfacial intermetallic compound in Ni and Co nanoparticle-doped SAC305 solder joints under electromigration [J]. J. Mater. Sci.: Mater. Electron., 2022, 33: 14240
76 Bashir M N, Haseeb A S M A, Rahman A Z M S, et al. Effect of cobalt doping on the microstructure and tensile properties of lead free solder joint subjected to electromigration [J]. J. Mater. Sci. Technol., 2016, 32: 1129
doi: 10.1016/j.jmst.2016.09.007
77 Li Y, Luo K M, Lim A B Y, et al. Improving the mechanical performance of Sn57.6Bi0.4Ag solder joints on Au/Ni/Cu pads during aging and electromigration through the addition of tungsten (W) nanoparticle reinforcement [J]. Mater. Sci. Eng., 2016, A669: 291
78 Shafiq I, Chan Y C, Xu S, et al. Electro-migration study of nano Al doped lead-free Sn-58Bi on Cu and Au/Ni/Cu ball grid array (BGA) packages [A]. 18th European Microelectronics & Packaging Conference [C]. Brighton: IEEE, 2011: 1
79 Shafiq I, Chan Y C. Improved electro-migration resistance in nano Ag modified Sn-58Bi solder joints under current stressing [A]. 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering [C]. Xi'an: IEEE, 2011: 374
80 Kim Y, Nagao S, Sugahara T, et al. Refinement of the microstructure of Sn-Ag-Bi-In solder, by addition of SiC nanoparticles, to reduce electromigration damage under high electric current [J]. J. Electron. Mater., 2014, 43: 4428
81 Yang L, Ge J G, Zhang Y C, et al. Electromigration reliability for Al2O3-reinforced Cu/Sn-58Bi/Cu composite solder joints [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 3004
82 Xu S, Chan Y C, Zhang K L, et al. Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3.5Ag0.5Cu solder joint under current stressing [J]. J. Alloys Compd., 2014, 595: 92
83 Chen G, Li J Q, Kuang X W, et al. The study on reliability of Ni-coated graphene doped SAC305 lead-free composite solders under high current-density stressing [J]. Soldering Surf. Mount Technol., 2019, 31: 261
84 Kim J, Jung K H, Kim J H, et al. Electromigration behaviors of Sn58%Bi solder containing Ag-coated MWCNTs with OSP surface finished PCB [J]. J. Alloys Compd., 2019, 775: 581
85 Dai J J, Zhang Y X, Li Z K, et al. Research on reliability of Ni/Sn/Cu(Ni) copper pillar bump under thermoelectric loading [J]. J. Electron. Packag., 2022, 144: 031014
86 Chiu M C, Tsai M Y, Wang S B, et al. Applications of Ni and Ag metallizations at the solder/Cu interfaces in advanced high-power automobile interconnects: An electromigration study [J]. Surf. Coat. Technol., 2024, 484: 130828
87 Kim J, Jung S B, Yoon J W. Effect of Ni(P) thickness in Au/Pd/Ni(P) surface finish on the electrical reliability of Sn-3.0Ag-0.5Cu solder joints during current-stressing [J]. J. Alloys Compd., 2021, 850: 156729
88 Huang M L, Chen L D, Zhou S M, et al. Effect of surface finish (OSP and ENEPIG) on failure mechanism induced by electromigration in Sn-3.0Ag-0.5Cu flip chip solder interconnect [A]. 2011 International Symposium on Advanced Packaging Materials (APM) [C]. Xiamen: IEEE, 2011: 297
89 Wang F J, Liu L T, Zhou L L, et al. Microstructural evolution of Sn-58Bi/Cu joints through minor Zn alloying substrate during electromigration [J]. Mater. Trans., 2017, 58: 1593
90 Zhang S N, Ren J, Huang F F, et al. In-situ observation on liquid-solid electromigration behavior of (111) nt-Cu/Sn/Cu interconnects [A]. 25th International Conference on Electronic Packaging Technology (ICEPT) [C]. Tianjin: IEEE, 2024: 1
91 Zhang J Q, Huang X M, Wang X J, et al. Effect of (111) oriented nanotwinned Cu substrate on the electromigration of Sn58Bi solder joint at high current density [J]. J. Mater. Sci.: Mater. Electron., 2024, 35: 1293
92 Chen C N, Chen B Z, Wu W H, et al. Correlation between Ag content and Cu pad consumption in lead-free solder joints under electron current stressing [A]. 12th International Conference on Electronic Packaging Technology and High Density Packaging [C]. Shanghai: IEEE, 2011: 1
93 Yamanaka K, Nishikawa H, Taguchi H, et al. Effect of magnetic flux density on Sn crystallographic orientation in a solder joint system [J]. J. Mater. Sci.: Mater. Electron., 2016, 27: 3710
94 Chen J Q, Guo J D, Ma H C, et al. Magnetic-field induced anisotropy in electromigration behavior of Sn-Ag-Cu solder interconnects [J]. J. Mater. Res., 2015, 30: 1065
95 Ma Z L, Belyakov S A, Sweatman K, et al. Harnessing heterogeneous nucleation to control tin orientations in electronic interconnections [J]. Nat. Commun., 2017, 8: 1916
doi: 10.1038/s41467-017-01727-6 pmid: 29203763
96 Huang M L, Yang F. Size effect model on kinetics of interfacial reaction between Sn-xAg-yCu solders and Cu substrate [J]. Sci. Rep., 2014, 4: 7117
doi: 10.1038/srep07117 pmid: 25408359
97 Liu Y X, Chu Y C, Tu K N. Scaling effect of interfacial reaction on intermetallic compound formation in Sn/Cu pillar down to 1 μm diameter [J]. Acta Mater., 2016, 117: 146
98 Ouyang F Y, Hsu H, Su Y P, et al. Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging [J]. J. Appl. Phys., 2012, 112: 023505
99 Shen Y A, Chen C. Effect of Sn grain orientation on formation of Cu6Sn5 intermetallic compounds during electromigration [J]. Scr. Mater., 2017, 128: 6
100 Chang Y W, Hu C C, Peng H Y, et al. A new failure mechanism of electromigration by surface diffusion of Sn on Ni and Cu metallization in microbumps [J]. Sci. Rep., 2018, 8: 5935
[1] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[2] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[3] TIAN Zhihua, ZHANG Peigen, LIU Yushuang, LU Chengjie, DING Jianxiang, SUN Zhengming. Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates[J]. 金属学报, 2022, 58(3): 295-310.
[4] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[5] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[6] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[7] Zhijie ZHANG,Mingliang HUANG. Liquid-Solid Electromigration Behavior of Cu/Sn-52In/Cu Micro-Interconnect[J]. 金属学报, 2017, 53(5): 592-600.
[8] HUANG Mingliang, ZHANG Zhijie, FENG Xiaofei, ZHAO Ning. REVERSE POLARITY EFFECT IN Ni/Sn-9Zn/Ni INTERCONNECT UNDERGOING LIQUID- SOLID ELECTROMIGRATION[J]. 金属学报, 2015, 51(1): 93-99.
[9] HANG Chunjin, TIAN Yanhong,ZHAO Xin, WANG Chunqing. RESEARCH ON MICROSTRUCTURE OF Pb-FREE BGA SOLDER JOINT ASSEMBLED WITH Sn-Pb SOLDER DURING ISOTHERMAL AGING[J]. 金属学报, 2013, 49(7): 831-837.
[10] HUANG Mingliang, ZHOU Shaoming, CHEN Leida, ZHANG Zhijie. EFFECT OF ELECTROLESS Ni-P CONSUMPTION ON THE FAILURE MECHANISM OF SOLDER JOINTS DURING ELECTROMIGRATION[J]. 金属学报, 2013, 49(1): 81-86.
[11] YUE Wu, QIN Hongbo, ZHOU Minbo, MA Xiao, ZHANG Xinping. INFLUENCE OF SOLDER JOINT CONFIGURATION ON ELECTROMIGRATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Cu/Sn-58Bi/Cu MICROSCALE JOINTS[J]. 金属学报, 2012, 48(6): 678-686.
[12] HUANG Mingliang CHEN Leida ZHOU Shaoming. EFFECT OF ELECTROMIGRATION ON INTERFACIAL REACTION IN Ni/Sn3.0Ag0.5Cu/Cu FLIP CHIP SOLDER JOINTS[J]. 金属学报, 2012, 48(3): 321-328.
[13] ZHAO Jie LI Dongming FANG Yuanyuan. STATISTICAL ANALYSIS AND RELIABILITY PREDICTION OF CREEP RUPTURE PROPERTY FOR T91/P91 STEEL[J]. 金属学报, 2009, 45(7): 835-839.
[14] HE Hongwen XU Guangchen GUO Fu. FORMATION OF WHISKER AND HILLOCK IN Cu/Sn--58Bi/Cu SOLDERED JOINT DURING ELECTROMIGRATION[J]. 金属学报, 2009, 45(6): 744-748.
[15] YIN Limeng YANG Yan LIU Liangqi ZHANG Xinping. SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIATURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING[J]. 金属学报, 2009, 45(4): 422-427.
No Suggested Reading articles found!