Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (7): 998-1010    DOI: 10.11900/0412.1961.2025.00028
Research paper Current Issue | Archive | Adv Search |
Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes
XIE Xu1,2, WAN Yibo1, ZHONG Ming1, ZOU Xiaodong3, WANG Cong1()
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
3 China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510650, China
Cite this article: 

XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes. Acta Metall Sin, 2025, 61(7): 998-1010.

Download:  HTML  PDF(3732KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the shipbuilding industry and coastal engineering, thick EH36 steel plates used in vertical construction generally require joining by high heat input electro-gas welding with matching flux-cored wire to enhance production efficiency and reduce construction time. However, high heat input welding can result in high peak temperatures and slow cooling rates, leading to coarse and deteriorated microstructures in the weld metal, thereby compromising the mechanical properties of the welded joint. Given the challenge of quantifying and controlling the composition, microstructure, and properties of weld metal due to complex metallurgical reactions during high heat input electro-gas welding, five CaF2-TiO2 fluxes were designed, prepared, and incorporated into flux-cored wires to join EH36 shipbuilding steels with a thickness of 30 mm. The effect of TiO2 content on the composition, microstructure, inclusions, and properties of the weld metals was systematically studied. The results indicate that as the TiO2 content in the fluxes increases, the hardness of the weld metal decreases, while impact toughness improves. During welding, the high-temperature arc causes greater decomposition of TiO2, leading to increased O and Ti contents in the molten pool. Simultaneously, more Si and Mn are lost into the slag through the slag-metal interface. The reduction in alloying element content shifts the continuous cooling transformation curve toward the upper left, expanding the temperature range of the ferrite phase transformation from 755-578 oC to 780-595 oC. Increasing the O and Ti contents in the weld metals raises the number density of inclusions from 4289 mm-2 to 5327 mm-2. The synergistic effect of multiple factors promotes an increase in the volume fraction of acicular ferrite from 9.3% to 62.1%. The morphology of key microstructures in the weld metals transitions from parallel lath bainite to interwoven acicular ferrite, refining the grain size from (53 ± 14) μm to (10 ± 5) μm and increasing the volume fraction of high-angle grain boundaries from 41.8% to 59.2%, further enhancing the impact toughness of the weld metals.

Key words:  shipbuilding steel      high heat input welding      weld metal      microstructure      CaF2-TiO2 flux     
Received:  21 January 2025     
ZTFLH:  TG111.5  
Fund: National Natural Science Foundation of China(W2411047);National Natural Science Foundation of China(52350610266);National Natural Science Foundation of China(52474351);National Key Research and Development Program of China(2023YFB3709900);Major Project of Liaoning Province Innovation Consortium(2023JH1/11200012);Science and Technology Development Program of Henan Province(242102231030);Marine Economic Development Project of Guangdong Province(GDNRC[2024]24);Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology(FMRUlab25-04)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2025.00028     OR     https://www.ams.org.cn/EN/Y2025/V61/I7/998

Fig.1  Binary phase diagram and viscosities of CaF2-TiO2[21] (Black and red dots represent the corresponding composition points in this work)

Flux

number

DesignedAnalyzed
TiO2CaF2TiO2CaF2
Flux-1109010.6689.34
Flux-2158517.0482.96
Flux-3208021.0278.98
Flux-4307030.7769.23
Flux-5406040.8959.11
Table 1  Formulas of employed CaF2-TiO2 fluxes
MaterialCSiMnNiAlPTiSOFe
Base metal0.1850.0041.5200.0440.0010.0090.0010.0070.002Bal.
Flux-cored wire0.0680.3062.5041.2600.7770.0040.0520.0030.002Bal.
Table 2  Chemical compositions of EH36 shipbuilding steel and flux-cored wire
WM numberCSiMnNiAlTiMoOFe
WM10.1020.2062.0800.6600.0370.0410.0640.022Bal.
WM20.0900.2052.0300.6340.0330.0440.0700.024Bal.
WM30.0890.2011.8600.6570.0260.0480.0510.025Bal.
WM40.0870.1851.8200.6120.0210.0590.0640.027Bal.
WM50.0860.1651.7900.6030.0210.0630.0590.029Bal.
Table 3  Chemical compositions of weld metals (WMs) (MA)
WM number

d

%

MN (mass fraction / %)ΔM (mass fraction / %)
OTiMnSiOTiMnSi
WM129.10.0020.0372.2180.2180.0200.004-0.138-0.012
WM228.60.0020.0382.2230.2190.0220.006-0.193-0.014
WM328.20.0020.0382.2280.2210.0230.010-0.368-0.020
WM430.70.0020.0372.2020.2130.0250.022-0.382-0.028
WM531.50.0020.0372.1940.2110.0270.026-0.404-0.046
Table 4  Dilution fractions of base material (d); nominal compositions (MN) and transitional exchange values (ΔM) of typical elements in WM
Fig.2  SEM images and corresponding EDS results (atomic fraction, %) of typical inclusions in WMs
(a) O-Ti-Al-Mn-Si (b) O-Ti-Al-Mn-Si-S (c) O-Ti-Al-Mn
Fig.3  Normalized atomic fractions of Ti, Si, and Mn of inclusions in different WMs
(a) WM1 (b) WM2 (c) WM3 (d) WM4 (e) WM5
Fig.4  Number densities of inclusions (N) with different sizes in different WMs (dA—average size)
Fig.5  Typical SEM images of WM1 (a), WM2 (b), WM3 (c), WM4 (d), and WM5 (e); number densities of inclusions and volume fractions of acicular ferrites (AFs) in different WMs as a function of TiO2 content (f) (Inset in Fig.5e shows the formation of AFs induced by the typical complex inclusions in the WM)
WMAverageAverage size of
numbergrain sizemartensite-austenite
constituent
WM153 ± 1412 ± 7
WM249 ± 1110 ± 6
WM331 ± 104 ± 3
WM412 ± 63 ± 2
WM510 ± 53 ± 2
Table 5  Average grain sizes of typical microstructures in different WMs
Fig.6  Crystallographic characteristics in WM1 (a, f), WM2 (b, g), WM3 (c, h), WM4 (d, i), and WM5 (e, j) analyzed by EBSD
(a-e) inverse pole figures (f-j) grain boundary distribution maps (The blue and red lines denote the high angle grain boundaries (HAGBs) with misorientation angle > 15° and low angle grain boundaries (LAGBs) with misorientation angle 2°-15°, respectively)
Fig.7  Effects of TiO2 content in CaF2-TiO2 flux on the Vickers hardness and impact energy of WMs
Fig.8  SEM images showing the impact fracture morphologies of WM1 (a), WM3 (b), and WM5 (d)
WM numberαTiO2 (mole fraction)ΔG / (J·mol-1)
WM10.102-347767
WM20.121-350996
WM30.137-353342
WM40.167-357084
WM50.198-360302
Table 6  Activities of TiO2 in slag (αTiO2) and the corresponding Gibbs free energy changes (ΔG)
Fig.9  Volume fractions of salient phases in different WMs as a function of TiO2 content (GBF—grain boundary ferrite, PF—polygonal ferrite, LB—lath bainite, GB—granular bainite)
Fig.10  Continuous cooling transformation (CCT) diagram shift for the WMs induced by TiO2 content (Insets show the schematics of forming paths of salient phases in the weld metals) (Ts, Ferrite, WM1 and Ts, Ferrite, WM5—starting temperatures at which supercooled austenite transforms into ferrite in WM1 and WM5, respectively; Ts, Bainite, WM1 and Ts, Bainite, WM5—starting temperatures at which supercooled austenite transforms into bainite in WM1 and WM5, respectively)
1 Zhang J, Leng J, Wang C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2019, 50B: 2083
2 Han M, Zhang X, Ma Q J, et al. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input [J]. Trans. China Weld. Inst., 2024, 45(2): 47
韩 美, 张 熹, 马青军 等. 微量元素对超大线能量EH36船板热影响区粗晶区组织和性能的影响 [J]. 焊接学报, 2024, 45(2): 47
3 Shen Y, Leng J, Wang C. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding [J]. J. Mater. Sci. Technol., 2019, 35: 1747
doi: 10.1016/j.jmst.2019.03.035
4 Xie X, Zhao T, Zhao H M, et al. Heterogeneous microstructure-induced mechanical responses in various sub-zones of EH420 shipbuilding steel welded joint under high heat input electro-gas welding [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1427
5 Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
6 Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 201
7 Wang C Y, Han S W, Xie F, et al. Influence of solid-state phase transformation and softening effect on welding residual stress of ultra-high strength steel [J]. Acta Metall. Sin., 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
王重阳, 韩世伟, 谢 峰 等. 固态相变和软化效应对超高强钢焊接残余应力的影响 [J]. 金属学报, 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
8 Song F Y, Li Y M, Wang P, et al. Effects of heat input on the microstructure and impact toughness of weld metal processed by a new fluxnovel flux cored wire weld [J]. Acta Metall. Sin., 2016, 52: 890
宋峰雨, 李艳梅, 王 平 等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响 [J]. 金属学报, 2016, 52: 890
doi: 10.11900/0412.1961.2015.00584
9 An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta Metall. Sin., 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
10 Kah P, Martikainen J. Influence of shielding gases in the welding of metals [J]. Int. J. Adv. Manuf. Technol., 2013, 64: 1411
11 Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: An overview [J]. Acta Metall. Sin., 2021, 57: 1126
王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
12 Kou S. Welding Metallurgy [M]. 2nd Ed., New Jersey: Wiley, 2003: 234
13 Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel [J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响 [J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
14 Wang X L, Dong L M, Yang W W, et al. Effect of Mn, Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 649
王学林, 董利明, 杨玮玮 等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响 [J]. 金属学报, 2016, 52: 649
doi: 10.11900/0412.1961.2015.00453
15 Han C, Zhong M, Zuo P, et al. SiO2-bearing fluxes induced evolution of γ columnar grain size [J]. Weld. J., 2024, 103: 308
16 Sampath K. Metallurgical design rules for high-strength steel weld metals [J]. Weld. J., 2022, 101: 123
17 He L, Wang R F, Cheng Y J, et al. Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag [J]. Trans. China Weld. Inst., 2023, 44(5): 7
何 磊, 王任甫, 成应晋 等. TiO2和Al2O3对CaO-SiO2-CaF2基础焊接渣系熔化特性的影响 [J]. 焊接学报, 2023, 44(5): 7
18 Li C N, Lou S Y, Di X J, et al. Effect of TiO2 in the self-shielded flux-cored wire on microstructures and properties of deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1171
利成宁, 楼嗣耀, 邸新杰 等. TiO2对自保护药芯焊丝熔敷金属组织与性能的影响 [J]. 天津大学学报(自然科学与工程技术版), 2023, 56: 1171
19 Natalie C A, Olson D L, Blander M. Physical and chemical behavior of welding fluxes [J]. Annu. Rev. Mater. Res., 1986, 16: 389
20 A R. Improvement of microstructure and toughness in high heat input weld [D]. Beijing: Central Iron & Steel Research Institute, 2014
阿 荣. 大热输入钢焊缝组织及韧性改善 [D]. 北京: 钢铁研究总院, 2014
21 Mills K C. Slag Atlas [M]. Düsseldorf: Verlag Stahleisen GmbH, 1995: 21
22 Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-TiO2 fluxes in EH36 shipbuilding steel during high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 1953
23 Zong R, Chen J, Wu C S, et al. Influence of shielding gas on undercutting formation in gas metal arc welding [J]. J. Mater. Process. Technol., 2016, 234: 169
24 Chai C S. Slag-metal reactions during flux shielded arc welding [D]. Cambridge: Massachusetts Institute of Technology, 1980
25 Sikorski A K. Effects of the chemical composition of the gas shield on the properties of flux-cored wire welds [J]. Weld. Int., 1993, 7: 683
26 Zou X D, Matsuura H, Wang C. Quantifying MnS inclusion evolution behaviors during 1473 K heating in EH36 shipbuilding steel with Zr addition [J]. Metall. Mater. Trans., 2019, 50B: 1134
27 Koseki T, Thewlis G. Overview: Inclusion assisted microstructure control in C-Mn and low alloy steel welds [J]. Mater. Sci. Technol., 2005, 21: 867
28 Yuan X B, Zhong M, Wu Y W, et al. Characterizing inclusions in the weld metal of EH36 shipbuilding steel processed by CaF2-30 wt pct TiO2 flux [J]. Metall. Mater. Trans., 2022, 53B: 656
29 Kang Y, Jang J, Park J H, et al. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals [J]. Met. Mater. Int., 2014, 20: 119
30 Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds [J]. Metall. Mater. Trans., 2016, 47A: 2842
31 Babu S S, David S A, Vitek J M, et al. Model for inclusion formation in low alloy steel welds [J]. Sci. Technol. Weld. Joining, 1999, 4: 276
32 Liu S, Olson D L. The role of inclusions in controlling HSLA steel weld microstructures [J]. Weld. J., 1986, 65: 139s
33 Babu S S. The mechanism of acicular ferrite in weld deposits [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
34 Xie X, Zhong M, Kaldre I, et al. Detailing microstructural evolution roadmap in the weld metal of EH420 shipbuilding steel subjected to varied reheating inputs [J]. Metall. Mater. Trans., 2023, 54A: 1077
35 Wen C F, Deng X T, Tian Y, et al. Microstructural evolution and toughness of the various HAZs in 1300-MPa-grade ultrahigh-strength structural steel [J]. J. Mater. Eng. Perform., 2019, 28: 1301
36 Liu Y, Wan X L, Li G Q, et al. Grain refinement in coarse-grained heat-affected zone of Al-Ti-Mg complex deoxidised steel [J]. Sci. Technol. Weld. Joining, 2019, 24: 43
37 Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures [J]. Sci. Technol. Weld. Joining, 2017, 22: 133
38 Wu Y W, Yuan X B, Kaldre I, et al. TiO2-assisted microstructural variations in the weld metal of EH36 shipbuilding steel subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2023, 54B: 50
39 Xiong Z H, Liu S L, Wang X M, et al. The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels [J]. Mater. Sci. Eng., 2015, A636: 117
40 Kang Y, Park G, Jeong S, et al. Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 177
41 Yang X C, Di X J, Liu X G, et al. Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels [J]. Mater. Charact., 2019, 155: 109818
42 Di X J, Tong M, Li C N, et al. Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel [J]. Mater. Sci. Eng., 2019, A743: 67
43 Zhang T L, Li Z X, Kou S, et al. Effect of inclusions on microstructure and toughness of deposited metals of self-shielded flux cored wires [J]. Mater. Sci. Eng., 2015, A628: 332
44 Tabor D. The Hardness of Metals [M]. Oxford: Clarendon Press, 2000: 160
45 Wen M Y, Dong W C, Pang H Y, et al. Microstructure and impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel [J]. Acta Metall. Sin., 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
文明月, 董文超, 庞辉勇 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究 [J]. 金属学报, 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
46 Zhu D M, He J L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness of the simulated CGHAZ in Q500qE steel [J]. Acta Metall. Sin., 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
朱东明, 何江里, 史根豪 等. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响 [J]. 金属学报, 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
47 Erokhin A A, translated by Zhao Y M. Theory of Fusion Welding [M]. Beijing: China Machinery Press, 1981: 232
Erokhin A A著, 赵裕民 译. 熔焊原理 [M]. 北京: 机械工业出版社, 1981: 232
48 Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016 [J]. Calphad, 2016, 54: 35
49 Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 1: Solidified slag composition of a FCAW consumable as a basicity indicator: A basicity index for a flux cored electrode was developed, taking into consideration the metal sheath, fill ingredien [J]. Weld. J., 2000, 79: 57s
50 Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 2: Verification of the flux/slag analysis methodology for weld metal oxygen control: The prediction model is verified by experimental results [J]. Weld. J., 2000, 79: 66s
51 Zhang Y Y, Zhang J, Liu H X, et al. Addressing weld metal compositional variations in EH36 shipbuilding steel processed by CaF2-SiO2-CaO-TiO2 fluxes [J]. Metall. Mater. Trans., 2022, 53B: 1329
52 Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 885
53 Yuan H, Zhang Y, Liu H Y, et al. Bond characteristic-dependent viscosity variations in CaF2-SiO2-Al2O3-MgO welding fluxes [J]. Weld. J., 2025, 104: 107-s
54 Meng M D, Wei J S, An T B, et al. Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals [J]. Trans. China Weld. Inst., 2024, 45(4): 93
孟满丁, 魏金山, 安同邦 等. Si元素对800 MPa级HSLA钢焊材熔敷金属组织及韧性的影响 [J]. 焊接学报, 2024, 45(4): 93
55 Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
56 Xie X, Han S, Zhong M, et al. In situ observation of acicular ferrite growth behavior differences in weld metals subjected to varied CaF2-TiO2 flux-cored wires [J]. Metall. Mater. Trans., 2025, 56A: 7
57 Zhang J W, Yu L M, Liu C X, et al. Synergistic strengthening of high-Cr martensitic heat-resistant steel and application of thermo-mechanical treatments [J]. Acta Metall. Sin., 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
张竟文, 余黎明, 刘晨曦 等. 高Cr马氏体耐热钢的协同强化机制及形变热处理应用 [J]. 金属学报, 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
58 Abson D J. Acicular ferrite and bainite in C-Mn and low-alloy steel arc weld metals [J]. Sci. Technol. Weld. Joining, 2018, 23: 635
59 Zhang K Y, Dong W C, Zhao D, et al. Effect of solid-state phase transformation on stress and distortion for Fe-Co-Ni ultra-high strength steel components during welding and vacuum gas quenching processes [J]. Acta Metall. Sin., 2023, 59: 1633
张开元, 董文超, 赵 栋 等. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响 [J]. 金属学报, 2023, 59: 1633
doi: 10.11900/0412.1961.2022.00177
60 Shen Y, Gu Z M, Wang C. Phase transformation behaviors in the heat-affected zones of ferritic heat-resistant steels enabled by in situ CSLM observation [J]. Acta Metall. Sin., 2024, 60: 802
doi: 10.11900/0412.1961.2023.00045
申 洋, 谷征满, 王 聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察 [J]. 金属学报, 2024, 60: 802
61 Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
62 Yamada T, Terasaki H, Komizo Y I. Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld [J]. ISIJ Int., 2009, 49: 1059
63 Takada A, Komizo Y I, Terasaki H, et al. Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals [J]. Weld. Int., 2015, 29: 254
64 Yang Y K, Zhan D P, Lei H, et al. In situ observation of acicular ferrite nucleation and growth at different cooling rate in Ti-Zr deoxidized steel [J]. Metall. Mater. Trans., 2019, 50B: 2536
[1] SUN Huanteng, MA Yunzhu, CAI Qingshan, WANG Jianning, DUAN Youteng, ZHANG Mengxiang. Differential Microstructure Between fcc and bcc Steel Plates Under Hyper-Velocity Impact[J]. 金属学报, 2025, 61(7): 1011-1023.
[2] WANG Qiang, LI Xiaobing, HAO Junjie, CHEN Bo, ZHANG Bin, ZHANG Erlin, LIU Kui. Solid-State Phase Transformation Behavior of a Novel Ti-Al-Mn-Nb Alloy[J]. 金属学报, 2025, 61(7): 1060-1070.
[3] HAO Xubang, CHENG Weili, LI Jian, WANG Lifei, CUI Zeqin, YAN Guoqing, ZHAI Kai, YU Hui. Electrochemical Behavior and Discharge Performance of a Low-Alloyed Mg-Ag Alloy as Anode for Mg-Air Battery[J]. 金属学报, 2025, 61(6): 837-847.
[4] LIU Ziru, GUO Qianying, ZHANG Hongyu, LIU Yongchang. Effects of V on the Microstructure Evolution and Hardness Enhancement of Ti2AlNb Alloy[J]. 金属学报, 2025, 61(6): 848-856.
[5] LI Dayu, YAO Zhihao, ZHAO Jie, DONG Jianxin, GUO Jing, ZHAO Yu. Evolution of Microstructure and Mechanical Properties of FGH4720Li P/M Superalloy Under Near-Service Conditions[J]. 金属学报, 2025, 61(6): 826-836.
[6] ZHOU Renyuan, ZHU Lihui. Formation of γ′-Denuded Zone and Its Effect on the Mechanical Properties of Inconel 740H Welded Joint After Creep at Different Temperatures[J]. 金属学报, 2025, 61(5): 744-756.
[7] LEI Yunlong, YANG Kang, XIN Yue, JIANG Zitao, TONG Baohong, ZHANG Shihong. Microstructure Evolution of Mechanically-Alloying and Its Subsequently-Annealed AlCrCu0.5Mo0.5Ni High-Entropy Alloy[J]. 金属学报, 2025, 61(5): 731-743.
[8] YANG Minghui, LI Xingwu, SUN Chonghao, RUAN Ying. Microstructure and Mechanical Properties of Monel K-500 Alloy in Synergetic Modulation of Directional Solidification and Thermal Processing[J]. 金属学报, 2025, 61(4): 561-571.
[9] HUANG Ke, LI Xinzhi, FANG Xuewei, LU Bingheng. State-of-the-Art Progress and Outlook in Wire Arc Additive Manufacturing of Magnesium Alloys[J]. 金属学报, 2025, 61(3): 397-419.
[10] JIANG Bin, ZHANG Ang, SONG Jiangfeng, LI Tian, YOU Guoqiang, ZHENG Jiang, PAN Fusheng. Defect Control of Magnesium Alloy Gigacastings[J]. 金属学报, 2025, 61(3): 383-396.
[11] WANG Sheng, ZHU Yancheng, PAN Hucheng, LI Jingren, ZENG Zhihao, QIN Gaowu. Effect of Yb Content on Microstructure and Mechanical Property of Mg-Gd-Y-Zn-Zr Alloy[J]. 金属学报, 2025, 61(3): 499-508.
[12] ZHOU Shengyu, HU Minghao, LI Chong, DING Haimin, GUO Qianying, LIU Yongchang. Creep Behavior of a Ni-Based Superalloy with Strengthening of γ' and γ'' Phases[J]. 金属学报, 2025, 61(2): 226-234.
[13] DAI Jincai, MIN Xiaohua, XIN Shewei, LIU Fengjin. Effect of Interstitial Element O on Cryogenic Mechanical Properties in β-Type Ti-15Mo Alloy[J]. 金属学报, 2025, 61(2): 243-252.
[14] HAN Qifei, DI Xinglong, GUO Yueling, YE Shuijun, ZHENG Yuanxuan, LIU Changmeng. Microstructure and Mechanical Properties of Mg/Mg Bimetals Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2025, 61(2): 211-225.
[15] GUO Xingxing, SHUAI Meirong, CHU Zhibing, LI Yugui, XIE Guangming. Microstructure Evolution Near Interface and the Element Diffusion Dynamics of the Composite Stainless Steel Rebar[J]. 金属学报, 2025, 61(2): 336-348.
No Suggested Reading articles found!