|
|
Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes |
XIE Xu1,2, WAN Yibo1, ZHONG Ming1, ZOU Xiaodong3, WANG Cong1( ) |
1 School of Metallurgy, Northeastern University, Shenyang 110819, China 2 School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China 3 China-Ukraine Institute of Welding, Guangdong Academy of Sciences, Guangzhou 510650, China |
|
Cite this article:
XIE Xu, WAN Yibo, ZHONG Ming, ZOU Xiaodong, WANG Cong. Optimizing Microstructures and Mechanical Properties of Electro-Gas Welded Metals for EH36 Shipbuilding Steel Treated by CaF2-TiO2 Fluxes. Acta Metall Sin, 2025, 61(7): 998-1010.
|
Abstract In the shipbuilding industry and coastal engineering, thick EH36 steel plates used in vertical construction generally require joining by high heat input electro-gas welding with matching flux-cored wire to enhance production efficiency and reduce construction time. However, high heat input welding can result in high peak temperatures and slow cooling rates, leading to coarse and deteriorated microstructures in the weld metal, thereby compromising the mechanical properties of the welded joint. Given the challenge of quantifying and controlling the composition, microstructure, and properties of weld metal due to complex metallurgical reactions during high heat input electro-gas welding, five CaF2-TiO2 fluxes were designed, prepared, and incorporated into flux-cored wires to join EH36 shipbuilding steels with a thickness of 30 mm. The effect of TiO2 content on the composition, microstructure, inclusions, and properties of the weld metals was systematically studied. The results indicate that as the TiO2 content in the fluxes increases, the hardness of the weld metal decreases, while impact toughness improves. During welding, the high-temperature arc causes greater decomposition of TiO2, leading to increased O and Ti contents in the molten pool. Simultaneously, more Si and Mn are lost into the slag through the slag-metal interface. The reduction in alloying element content shifts the continuous cooling transformation curve toward the upper left, expanding the temperature range of the ferrite phase transformation from 755-578 oC to 780-595 oC. Increasing the O and Ti contents in the weld metals raises the number density of inclusions from 4289 mm-2 to 5327 mm-2. The synergistic effect of multiple factors promotes an increase in the volume fraction of acicular ferrite from 9.3% to 62.1%. The morphology of key microstructures in the weld metals transitions from parallel lath bainite to interwoven acicular ferrite, refining the grain size from (53 ± 14) μm to (10 ± 5) μm and increasing the volume fraction of high-angle grain boundaries from 41.8% to 59.2%, further enhancing the impact toughness of the weld metals.
|
Received: 21 January 2025
|
|
Fund: National Natural Science Foundation of China(W2411047);National Natural Science Foundation of China(52350610266);National Natural Science Foundation of China(52474351);National Key Research and Development Program of China(2023YFB3709900);Major Project of Liaoning Province Innovation Consortium(2023JH1/11200012);Science and Technology Development Program of Henan Province(242102231030);Marine Economic Development Project of Guangdong Province(GDNRC[2024]24);Fund of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology(FMRUlab25-04) |
1 |
Zhang J, Leng J, Wang C. Tuning weld metal mechanical responses via welding flux optimization of TiO2 content: Application into EH36 shipbuilding steel [J]. Metall. Mater. Trans., 2019, 50B: 2083
|
2 |
Han M, Zhang X, Ma Q J, et al. The effect of trace elements on the microstructure and properties of coarse grain heat affected zone of EH36 ship steel with super large heat input [J]. Trans. China Weld. Inst., 2024, 45(2): 47
|
|
韩 美, 张 熹, 马青军 等. 微量元素对超大线能量EH36船板热影响区粗晶区组织和性能的影响 [J]. 焊接学报, 2024, 45(2): 47
|
3 |
Shen Y, Leng J, Wang C. On the heterogeneous microstructure development in the welded joint of 12MnNiVR pressure vessel steel subjected to high heat input electrogas welding [J]. J. Mater. Sci. Technol., 2019, 35: 1747
doi: 10.1016/j.jmst.2019.03.035
|
4 |
Xie X, Zhao T, Zhao H M, et al. Heterogeneous microstructure-induced mechanical responses in various sub-zones of EH420 shipbuilding steel welded joint under high heat input electro-gas welding [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1427
|
5 |
Wang L J, Cai Q W, Yu W, et al. Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel [J]. Acta Metall. Sin., 2010, 46: 687
|
|
王立军, 蔡庆伍, 余 伟 等. 1500 MPa级低合金超高强钢的微观组织与力学性能 [J]. 金属学报, 2010, 46: 687
doi: 10.3724/SP.J.1037.2009.00855
|
6 |
Bhadeshia H K D H. Bainite in Steels: Transformation, Microstructure and Properties [M]. 2nd Ed., London: IOM Communications, 2001: 201
|
7 |
Wang C Y, Han S W, Xie F, et al. Influence of solid-state phase transformation and softening effect on welding residual stress of ultra-high strength steel [J]. Acta Metall. Sin., 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
|
|
王重阳, 韩世伟, 谢 峰 等. 固态相变和软化效应对超高强钢焊接残余应力的影响 [J]. 金属学报, 2023, 59: 1613
doi: 10.11900/0412.1961.2022.00243
|
8 |
Song F Y, Li Y M, Wang P, et al. Effects of heat input on the microstructure and impact toughness of weld metal processed by a new fluxnovel flux cored wire weld [J]. Acta Metall. Sin., 2016, 52: 890
|
|
宋峰雨, 李艳梅, 王 平 等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响 [J]. 金属学报, 2016, 52: 890
doi: 10.11900/0412.1961.2015.00584
|
9 |
An T B, Wei J S, Shan J G, et al. Influence of shielding gas composition on microstructure characteristics of 1000 MPa grade deposited metals [J]. Acta Metall. Sin., 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
|
|
安同邦, 魏金山, 单际国 等. 保护气成分对1000 MPa级高强熔敷金属组织特征的影响 [J]. 金属学报, 2019, 55: 575
doi: 10.11900/0412.1961.2018.00375
|
10 |
Kah P, Martikainen J. Influence of shielding gases in the welding of metals [J]. Int. J. Adv. Manuf. Technol., 2013, 64: 1411
|
11 |
Wang C, Zhang J. Fine-tuning weld metal compositions via flux optimization in submerged arc welding: An overview [J]. Acta Metall. Sin., 2021, 57: 1126
|
|
王 聪, 张 进. 埋弧焊中焊剂对焊缝金属成分调控的研究进展 [J]. 金属学报, 2021, 57: 1126
|
12 |
Kou S. Welding Metallurgy [M]. 2nd Ed., New Jersey: Wiley, 2003: 234
|
13 |
Tian Y Q, Zhang H J, Chen L S, et al. Effect of alloy elements partitioning behavior on retained austenite and mechanical property in low carbon high strength steel [J]. Acta Metall. Sin., 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
|
|
田亚强, 张宏军, 陈连生 等. 低碳高强钢合金元素配分行为对残余奥氏体和力学性能的影响 [J]. 金属学报, 2014, 50: 531
doi: 10.3724/SP.J.1037.2013.00709
|
14 |
Wang X L, Dong L M, Yang W W, et al. Effect of Mn, Ni, Mo proportion on microstructure and mechanical properties of weld metal of K65 pipeline steel [J]. Acta Metall. Sin., 2016, 52: 649
|
|
王学林, 董利明, 杨玮玮 等. Mn/Ni/Mo配比对K65管线钢焊缝金属组织与力学性能的影响 [J]. 金属学报, 2016, 52: 649
doi: 10.11900/0412.1961.2015.00453
|
15 |
Han C, Zhong M, Zuo P, et al. SiO2-bearing fluxes induced evolution of γ columnar grain size [J]. Weld. J., 2024, 103: 308
|
16 |
Sampath K. Metallurgical design rules for high-strength steel weld metals [J]. Weld. J., 2022, 101: 123
|
17 |
He L, Wang R F, Cheng Y J, et al. Effect of TiO2 and Al2O3 on melting characteristics of CaO-SiO2-CaF2 base welding slag [J]. Trans. China Weld. Inst., 2023, 44(5): 7
|
|
何 磊, 王任甫, 成应晋 等. TiO2和Al2O3对CaO-SiO2-CaF2基础焊接渣系熔化特性的影响 [J]. 焊接学报, 2023, 44(5): 7
|
18 |
Li C N, Lou S Y, Di X J, et al. Effect of TiO2 in the self-shielded flux-cored wire on microstructures and properties of deposited metal [J]. J. Tianjin Univ. (Sci. Technol.), 2023, 56: 1171
|
|
利成宁, 楼嗣耀, 邸新杰 等. TiO2对自保护药芯焊丝熔敷金属组织与性能的影响 [J]. 天津大学学报(自然科学与工程技术版), 2023, 56: 1171
|
19 |
Natalie C A, Olson D L, Blander M. Physical and chemical behavior of welding fluxes [J]. Annu. Rev. Mater. Res., 1986, 16: 389
|
20 |
A R. Improvement of microstructure and toughness in high heat input weld [D]. Beijing: Central Iron & Steel Research Institute, 2014
|
|
阿 荣. 大热输入钢焊缝组织及韧性改善 [D]. 北京: 钢铁研究总院, 2014
|
21 |
Mills K C. Slag Atlas [M]. Düsseldorf: Verlag Stahleisen GmbH, 1995: 21
|
22 |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-TiO2 fluxes in EH36 shipbuilding steel during high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 1953
|
23 |
Zong R, Chen J, Wu C S, et al. Influence of shielding gas on undercutting formation in gas metal arc welding [J]. J. Mater. Process. Technol., 2016, 234: 169
|
24 |
Chai C S. Slag-metal reactions during flux shielded arc welding [D]. Cambridge: Massachusetts Institute of Technology, 1980
|
25 |
Sikorski A K. Effects of the chemical composition of the gas shield on the properties of flux-cored wire welds [J]. Weld. Int., 1993, 7: 683
|
26 |
Zou X D, Matsuura H, Wang C. Quantifying MnS inclusion evolution behaviors during 1473 K heating in EH36 shipbuilding steel with Zr addition [J]. Metall. Mater. Trans., 2019, 50B: 1134
|
27 |
Koseki T, Thewlis G. Overview: Inclusion assisted microstructure control in C-Mn and low alloy steel welds [J]. Mater. Sci. Technol., 2005, 21: 867
|
28 |
Yuan X B, Zhong M, Wu Y W, et al. Characterizing inclusions in the weld metal of EH36 shipbuilding steel processed by CaF2-30 wt pct TiO2 flux [J]. Metall. Mater. Trans., 2022, 53B: 656
|
29 |
Kang Y, Jang J, Park J H, et al. Influence of Ti on non-metallic inclusion formation and acicular ferrite nucleation in high-strength low-alloy steel weld metals [J]. Met. Mater. Int., 2014, 20: 119
|
30 |
Kang Y, Jeong S, Kang J H, et al. Factors affecting the inclusion potency for acicular ferrite nucleation in high-strength steel welds [J]. Metall. Mater. Trans., 2016, 47A: 2842
|
31 |
Babu S S, David S A, Vitek J M, et al. Model for inclusion formation in low alloy steel welds [J]. Sci. Technol. Weld. Joining, 1999, 4: 276
|
32 |
Liu S, Olson D L. The role of inclusions in controlling HSLA steel weld microstructures [J]. Weld. J., 1986, 65: 139s
|
33 |
Babu S S. The mechanism of acicular ferrite in weld deposits [J]. Curr. Opin. Solid State Mater. Sci., 2004, 8: 267
|
34 |
Xie X, Zhong M, Kaldre I, et al. Detailing microstructural evolution roadmap in the weld metal of EH420 shipbuilding steel subjected to varied reheating inputs [J]. Metall. Mater. Trans., 2023, 54A: 1077
|
35 |
Wen C F, Deng X T, Tian Y, et al. Microstructural evolution and toughness of the various HAZs in 1300-MPa-grade ultrahigh-strength structural steel [J]. J. Mater. Eng. Perform., 2019, 28: 1301
|
36 |
Liu Y, Wan X L, Li G Q, et al. Grain refinement in coarse-grained heat-affected zone of Al-Ti-Mg complex deoxidised steel [J]. Sci. Technol. Weld. Joining, 2019, 24: 43
|
37 |
Wang H H, Li G Q, Wan X L, et al. Microstructural characteristics and impact toughness in YS690MPa steel weld metal for offshore structures [J]. Sci. Technol. Weld. Joining, 2017, 22: 133
|
38 |
Wu Y W, Yuan X B, Kaldre I, et al. TiO2-assisted microstructural variations in the weld metal of EH36 shipbuilding steel subject to high heat input submerged arc welding [J]. Metall. Mater. Trans., 2023, 54B: 50
|
39 |
Xiong Z H, Liu S L, Wang X M, et al. The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels [J]. Mater. Sci. Eng., 2015, A636: 117
|
40 |
Kang Y, Park G, Jeong S, et al. Correlation between microstructure and low-temperature impact toughness of simulated reheated zones in the multi-pass weld metal of high-strength steel [J]. Metall. Mater. Trans., 2018, 49A: 177
|
41 |
Yang X C, Di X J, Liu X G, et al. Effects of heat input on microstructure and fracture toughness of simulated coarse-grained heat affected zone for HSLA steels [J]. Mater. Charact., 2019, 155: 109818
|
42 |
Di X J, Tong M, Li C N, et al. Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel [J]. Mater. Sci. Eng., 2019, A743: 67
|
43 |
Zhang T L, Li Z X, Kou S, et al. Effect of inclusions on microstructure and toughness of deposited metals of self-shielded flux cored wires [J]. Mater. Sci. Eng., 2015, A628: 332
|
44 |
Tabor D. The Hardness of Metals [M]. Oxford: Clarendon Press, 2000: 160
|
45 |
Wen M Y, Dong W C, Pang H Y, et al. Microstructure and impact toughness of welding heat-affected zones of a Fe-Cr-Ni-Mo high strength steel [J]. Acta Metall. Sin., 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
|
|
文明月, 董文超, 庞辉勇 等. 一种Fe-Cr-Ni-Mo高强钢焊接热影响区的显微组织与冲击韧性研究 [J]. 金属学报, 2018, 54: 501
doi: 10.11900/0412.1961.2017.00331
|
46 |
Zhu D M, He J L, Shi G H, et al. Effect of welding heat input on microstructure and impact toughness of the simulated CGHAZ in Q500qE steel [J]. Acta Metall. Sin., 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
|
|
朱东明, 何江里, 史根豪 等. 热输入对Q500qE钢模拟CGHAZ微观组织和冲击韧性的影响 [J]. 金属学报, 2022, 58: 1581
doi: 10.11900/0412.1961.2021.00175
|
47 |
Erokhin A A, translated by Zhao Y M. Theory of Fusion Welding [M]. Beijing: China Machinery Press, 1981: 232
|
|
Erokhin A A著, 赵裕民 译. 熔焊原理 [M]. 北京: 机械工业出版社, 1981: 232
|
48 |
Bale C W, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases, 2010-2016 [J]. Calphad, 2016, 54: 35
|
49 |
Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 1: Solidified slag composition of a FCAW consumable as a basicity indicator: A basicity index for a flux cored electrode was developed, taking into consideration the metal sheath, fill ingredien [J]. Weld. J., 2000, 79: 57s
|
50 |
Baune E, Bonnet C, Liu S. Reconsidering the basicity of a FCAW consumable-Part 2: Verification of the flux/slag analysis methodology for weld metal oxygen control: The prediction model is verified by experimental results [J]. Weld. J., 2000, 79: 66s
|
51 |
Zhang Y Y, Zhang J, Liu H X, et al. Addressing weld metal compositional variations in EH36 shipbuilding steel processed by CaF2-SiO2-CaO-TiO2 fluxes [J]. Metall. Mater. Trans., 2022, 53B: 1329
|
52 |
Zhang J, Coetsee T, Dong H B, et al. Element transfer behaviors of fused CaF2-SiO2-MnO fluxes under high heat input submerged arc welding [J]. Metall. Mater. Trans., 2020, 51B: 885
|
53 |
Yuan H, Zhang Y, Liu H Y, et al. Bond characteristic-dependent viscosity variations in CaF2-SiO2-Al2O3-MgO welding fluxes [J]. Weld. J., 2025, 104: 107-s
|
54 |
Meng M D, Wei J S, An T B, et al. Effects of Si content on microstructure and toughness of the 800 MPa grade high-strength low-alloy deposited metals [J]. Trans. China Weld. Inst., 2024, 45(4): 93
|
|
孟满丁, 魏金山, 安同邦 等. Si元素对800 MPa级HSLA钢焊材熔敷金属组织及韧性的影响 [J]. 焊接学报, 2024, 45(4): 93
|
55 |
Li X D, Shang C J, Ma X P, et al. Elemental distribution in the martensite-austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel [J]. Scr. Mater., 2017, 139: 67
|
56 |
Xie X, Han S, Zhong M, et al. In situ observation of acicular ferrite growth behavior differences in weld metals subjected to varied CaF2-TiO2 flux-cored wires [J]. Metall. Mater. Trans., 2025, 56A: 7
|
57 |
Zhang J W, Yu L M, Liu C X, et al. Synergistic strengthening of high-Cr martensitic heat-resistant steel and application of thermo-mechanical treatments [J]. Acta Metall. Sin., 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
|
|
张竟文, 余黎明, 刘晨曦 等. 高Cr马氏体耐热钢的协同强化机制及形变热处理应用 [J]. 金属学报, 2024, 60: 713
doi: 10.11900/0412.1961.2023.00488
|
58 |
Abson D J. Acicular ferrite and bainite in C-Mn and low-alloy steel arc weld metals [J]. Sci. Technol. Weld. Joining, 2018, 23: 635
|
59 |
Zhang K Y, Dong W C, Zhao D, et al. Effect of solid-state phase transformation on stress and distortion for Fe-Co-Ni ultra-high strength steel components during welding and vacuum gas quenching processes [J]. Acta Metall. Sin., 2023, 59: 1633
|
|
张开元, 董文超, 赵 栋 等. 固态相变对Fe-Co-Ni超高强度钢长臂梁构件焊接-淬火过程应力和变形的影响 [J]. 金属学报, 2023, 59: 1633
doi: 10.11900/0412.1961.2022.00177
|
60 |
Shen Y, Gu Z M, Wang C. Phase transformation behaviors in the heat-affected zones of ferritic heat-resistant steels enabled by in situ CSLM observation [J]. Acta Metall. Sin., 2024, 60: 802
doi: 10.11900/0412.1961.2023.00045
|
|
申 洋, 谷征满, 王 聪. 铁素体系耐热钢焊接热影响区相变行为的CSLM原位观察 [J]. 金属学报, 2024, 60: 802
|
61 |
Mao G J, Cao R, Guo X L, et al. In situ observation of kinetic processes of lath bainite nucleation and growth by laser scanning confocal microscope in reheated weld metals [J]. Metall. Mater. Trans., 2017, 48A: 5783
|
62 |
Yamada T, Terasaki H, Komizo Y I. Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld [J]. ISIJ Int., 2009, 49: 1059
|
63 |
Takada A, Komizo Y I, Terasaki H, et al. Crystallographic analysis for acicular ferrite formation in low carbon steel weld metals [J]. Weld. Int., 2015, 29: 254
|
64 |
Yang Y K, Zhan D P, Lei H, et al. In situ observation of acicular ferrite nucleation and growth at different cooling rate in Ti-Zr deoxidized steel [J]. Metall. Mater. Trans., 2019, 50B: 2536
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|