Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates
TIAN Zhihua1, ZHANG Peigen1(), LIU Yushuang2, LU Chengjie1, DING Jianxiang3, SUN Zhengming1()
1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China 3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article:
TIAN Zhihua, ZHANG Peigen, LIU Yushuang, LU Chengjie, DING Jianxiang, SUN Zhengming. Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates. Acta Metall Sin, 2022, 58(3): 295-310.
The spontaneous growth of metal whiskers, most notably tin whiskers, has a long history, and the electronics industry has suffered greatly as a result. Pb additive had previously deactivated research on the whiskering phenomenon, but the toxicity of lead alarmed people at the beginning of the century. Nevertheless, intricate conditions involved in the whisker growth research and the multifarious phenomena have hampered the research on this topic; therefore, a comprehensive understanding of the metal whisker growth has been absent. A related whiskering phenomenon on MAX phase substrates has been investigated in recent years, and the occurrence of MAX phase, compared with the whisker growth on metallic substrates, exhibits good repeatability, a short incubation period, a fast growth rate, and rich composition varieties. Therefore, the MAX phase as a new platform of whisker growth investigation is expected to speed up the understanding of the mechanisms related to this phenomenon. Regarding the general background of spontaneous metal whisker growth and our group's current findings, this review summarizes the current status of spontaneous metal whisker growth on MAX phase substrates, discusses and describes the growth mechanism from the two main processes of crystal growth (nucleation and growth), and concludes with a perspective on future research and potential applications of spontaneous whisker growth on the MAX phase substrates.
Fund: National Key Research and Development Program of China(2017YFE0301403);National Natural Science Foundation of China(51731004);Natural Science Foundation of Jiangsu Province(BK20201283)
Zhang P G , Zhang Y M , Sun Z M . Spontaneous growth of metal whiskers on surfaces of solids: A review [J]. J. Mater. Sci. Technol., 2015, 31: 675
5
Liu M , Xian A P . TEM observation of tin whisker [J]. Sci. China Technol. Sci., 2011, 54: 1546
6
Barsoum M W , Farber L . Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN [J]. Science, 1999, 284: 937
7
El-Raghy T , Barsoum M W . Growing metallic whiskers: Alternative interpretation [J]. Science, 1999, 285: 1355
8
Hoffman E N , Barsoum M W , Wang W , et al . On the spontaneous growth of soft metallic whiskers [A]. Proceedings of the 51st IEEE Holm Conference on Electrical Contacts [C]. Chicago, IL, USA: IEEE, 2005: 121
9
Boettinger W J , Johnson C E , Bendersky L A , et al . Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits [J]. Acta Mater., 2005, 53: 5033
10
Lin W C , Tseng T H , Liu W , et al . Effect of Sn film grain size and thickness on kinetics of spontaneous Sn whisker growth [J]. JOM, 2019, 71: 3041
11
Majumdar B S , Dutta I , Bhassyvasantha S , et al . Recent advances in mitigation of whiskers from electroplated tin [J]. JOM, 2020, 72: 906
12
Barsoum M W , Hoffman E N , Doherty R D , et al . Driving force and mechanism for spontaneous metal whisker formation [J]. Phys. Rev. Lett., 2004, 93: 206104
13
Shim W , Ham J , Lee K I , et al . On-film formation of Bi nanowires with extraordinary electron mobility [J]. Nano Lett., 2009, 9: 18
14
Cheng Y T , Weiner A M , Wong C A , et al . Stress-induced growth of bismuth nanowires [J]. Appl. Phys. Lett., 2002, 81: 3248
15
Sun Z M , Hashimoto H , Barsoum M W . On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature [J]. Acta Mater., 2007, 55: 3387
16
Ellis W C . Morphology of whisker crystals of tin, zinc, and cadmium grown spontaneously from solid [J]. Trans. Metall. Soc. AIME, 1966, 236: 872
17
Davis J H . Growth of thallium whiskers [J]. J. Appl. Phys., 1968, 39: 5811
18
Tohmyoh H , Yasuda M , Saka M . Controlling Ag whisker growth using very thin metallic films [J]. Scr. Mater., 2010, 63: 289
19
Kosinova A , Wang D , Schaaf P , et al . Whiskers growth in thin passivated Au films [J]. Acta Mater., 2018, 149: 154
20
Saka M , Yamaya F , Tohmyoh H . Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films [J]. Scr. Mater., 2007, 56: 1031
21
Horváth B , Illés B , Shinohara T , et al . Copper-oxide whisker growth on tin-copper alloy coatings caused by the corrosion of Cu6Sn5 intermetallics [J]. J. Mater. Sci., 2013, 48: 8052
22
Matsumoto T , Harries D , Langenhorst F , et al . Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering [J]. Nat. Commun., 2020, 11: 1117
23
Illés B , Skwarek A , Ratajczak J , et al . The influence of the crystallographic structure of the intermetallic grains on tin whisker growth [J]. J. Alloys Compd., 2019, 785: 774
24
Zhang Z H , Wei C W , Han J J , et al . Growth evolution and formation mechanism of η′-Cu6Sn5 whiskers on η-Cu6Sn5 intermetallics during room-temperature ageing [J]. Acta Mater., 2020, 183: 340
25
Hao H , Li G D , Shi Y W , et al . Study of rapid growth of tin whisker accelerated by rare earth Ce [J]. Rare Met. Mater. Eng., 2009, 38: 866
Li C F , Liu Z Q . Microstructure and growth mechanism of tin whiskers on RESn3 compounds [J]. Acta Mater., 2013, 61: 589
27
Liu Y S , Zhang P G , Yang L , et al . Spontaneous Ga whisker formation on FeGa3 [J]. Prog. Nat. Sci. Mater., 2018, 28: 569
28
Cobb H L . Cadmium whiskers [J]. Mon. Rev. Am. Electroplaters Soc., 1946, 33: 28
29
Compton K G , Mendizza A , Arnold S M . Filamentary growths on metal surfaces—“Whiskers” [J]. Corrosion, 1951, 7: 327
30
Chason E , Jadhav N , Pei F , et al . Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms [J]. Prog. Surf. Sci., 2013, 88: 103
31
George E , Pecht M . Tin whisker analysis of an automotive engine control unit [J]. Microelectron. Reliab., 2014, 54: 214
32
Mathew S , Osterman M , Shibutani T , et al . Tin whiskers: How to mitigate and manage the risks [A]. Proceedings of 2007 International Symposium on High Density Packaging and Microsystem Integration [C]. Shanghai, China: IEEE, 2007: 1
33
Li Y C , Sun M L , Ren S R , et al . The influence of non-uniform copper oxide layer on tin whisker growth and tin whisker growth behavior in SnAg microbumps with small diameter [J]. Mater. Lett., 2020, 258: 126773
34
NASA . Metal whisker photo gallery [EB/OL].
35
NASA . Whisker failures [EB/OL].
36
Arnold S M . The growth and properties of metal whiskers [A]. Proceedings of the 43rd Annual Convention of the American Electroplaters Society [C]. Washington, 1956: 26
37
Tu K N , Gusak A M , Li M . Physics and materials challenges for lead-free solders [J]. J. Appl. Phys., 2003, 93: 1335
38
Ruan Y , Ji X Q , Wen M , et al . Research progress of lead contamination detection technology in food [J]. Guizhou J. Anim. Husb. Vet. Med., 2012, 36(5): 12
Shangguan D K , translated by Liu J Y , Sun P . Lead-free Solder Interconnect Reliability [M]. Beijing: Publishing House of Electronics Industry, 2008: 352
Jagtap P , Chakraborty A , Eisenlohr P , et al . Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction [J]. Acta Mater., 2017, 134: 346
41
Meschter S J , Saha S K . Process for mitigation of whisker growth on a metallic substrate [P]. US Pat, 10907030, 2020
42
Liu S H , Ma L M , Shu Y T , et al . Growth behavior of whiskers in Sn-based lead-free solders [J]. Rare Met. Mater. Eng., 2015, 44: 2868
Peach M O . Mechanism of growth of whiskers on cadmium [J]. J. Appl. Phys., 1952, 23: 1401
44
Eshelby J D . A tentative theory of metallic whisker growth [J]. Phys. Rev., 1953: 91: 755
45
Ellis W C , Gibbons D F , Treuning R C . Growth of Metal Whiskers from the Solid, Growth and Perfection of Crystals [M]. New York: John Wiley & Sons, 1958: 102
46
Vianco P T , Cummings D P , Kotula P G , et al . Mitigation of long whisker growth based upon the dynamic recrystallization mechanism [J]. J. Electron. Mater., 2019, 49: 888
47
Tu K N . Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions [J]. Phys. Rev., 1994, 49B: 2030
48
Howard H P , Cheng J , Vianco P T , et al . Interface flow mechanism for tin whisker growth [J]. Acta Mater., 2011, 59: 1957
49
Glazunova V K . A study of the influence of certain factors on the growth of filamentary tin crystals [J]. Kristallografiya, 1962, 7: 761
50
Shibutani T , Yu Q , Yamashita T , et al . Stress-induced tin whisker initiation under contact loading [J]. IEEE Trans. Electron. Packag. Manuf., 2006, 29: 259
51
Jagtap P , Jain N , Chason E . Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth [J]. Scr. Mater., 2020, 182: 43
52
Liu Y S . Mechanisms behind the spontaneous A-site metal whisker gtowth on MAX phases [D]. Nanjing: Southeast University, 2019
刘玉爽 . MAX相中A位金属晶须自发生长机理研究 [D]. 南京: 东南大学, 2019
53
Zhang P , Liu Y , Ding J , et al . Controllable growth of Ga wires from Cr2GaC-Ga and its mechanism [J]. Physica, 2015, 475B: 90
54
Barsoum M W . MAX Phases: Properties of Machinable Ternary Carbides and Nitrides [M]. Weinheim: John Wiley & Sons, 2013: 1
55
Sokol M , Natu V , Kota S , et al . On the chemical diversity of the MAX phases [J]. Trend. Chem., 2019, 1: 210
56
Sun Z M . Progress in research and development on MAX phases: A family of layered ternary compounds [J]. Inter. Mater. Rev., 2011, 56: 143
57
Magnuson M , Mattesini M . Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory [J]. Thin Solid Films, 2017, 621: 108
58
Jeitschko W , Nowotny H , Benesovsky F , et al . Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC [J]. Monatsh. Chem., 1963, 94: 1201
59
Barsoum M W , Farber L , Levin I , et al . High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited [J]. J. Am. Ceram. Soc., 1999, 82: 2545
60
Procopio A T , Barsoum M W , El-Raghy T . Characterization of Ti4AlN3 [J]. Metall. Mater. Trans., 2000, 31A: 333
61
Barsoum M W , El-Raghy T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J]. J. Am. Ceram. Soc., 1996, 79: 1953
62
Barsoum M W . The MN + 1AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
63
Lin Z J , Zhuo M J , Zhou Y C , et al . Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides [J]. J. Am. Ceram. Soc., 2006, 89: 3765
64
Zheng L Y , Wang J M , Lu X P , et al . (Ti0.5Nb0.5)5AlC4: A new-layered compound belonging to MAX phases [J]. J. Am. Ceram. Soc., 2010, 93: 3068
65
Palmquist J P , Li S , Persson P O Å , et al . Mn + 1AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J]. Phys. Rev., 2004, 70B: 165401
66
Naguib M , Kurtoglu M , Presser V , et al . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater., 2011, 23: 4248
67
Verger L , Xu C , Natu V , et al . Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 149
68
Verger L , Natu V , Carey M , et al . MXenes: An introduction of their synthesis, select properties, and applications [J]. Trend. Chem., 2019, 1: 656
69
Li M , Huang Q . Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes [J]. J. Inorg. Mater., 2020, 35: 1
Whittle K R , Blackford M G , Aughterson R D , et al . Radiation tolerance of Mn + 1AXn phases, Ti3AlC2 and Ti3SiC2 [J]. Acta Mater., 2010, 58: 4362
73
Ding J X , Tian W B , Wang D D , et al . Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging [J]. J. Alloys Compd., 2019, 785: 1086
74
Wu J Y , Zhou Y C , Wang J Y . Tribological behavior of Ti2SnC particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2006, A422: 266
75
Shahzad F , Alhabeb M , Hatter C B , et al . Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353: 1137
76
Ghidiu M , Lukatskaya M R , Zhao M Q , et al . Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516: 78
77
Kamysbayev V , Filatov A S , Hu H C , et al . Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science, 2020, 369: 979
78
Liu Y , Zhang P , Ling C , et al . Spontaneous Sn whisker formation on Ti2SnC [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 5788
79
Zhang H B , Zhang J , Zhou Y C , et al . Synthesis of AlN nanowires by nitridation of Ti3Si0.9Al0.1C2 solid solution [J]. J. Mater. Res., 2007, 22: 561
80
Sun Z M , Gupta S , Ye H , et al . Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces [J]. J. Mater. Res., 2005, 20: 2618
81
Sun Z M , Barsoum M W . Alternate mechanism for the spontaneous formation of freestanding Ga nanoribbons on Cr2GaC surfaces [J]. J. Mater. Res., 2006, 21: 1629
82
Lu C J , Liu Y S , Fang J , et al . Isotope study reveals atomic motion mechanism for the formation of metal whiskers in MAX phase [J]. Acta Mater., 2021, 203: 116475
83
Zhang Y , Lu C J , Liu Y S , et al . The effect of Bi addition on the formation of metal whiskers in Ti2SnC/Sn-xBi system [J]. Vacuum, 2020, 182: 109764
84
Chuang T H . Rapid whisker growth on the surface of Sn-3Ag-0.5Cu-1.0Ce solder joints [J]. Scr. Mater., 2006, 55: 983
85
Zhang P , Shen L W , Ouyang J , et al . Room temperature mushrooming of gallium wires and its growth mechanism [J]. J. Alloys Compd., 2015, 619: 488
86
Liu Y , Zhang P , Zhang Y M , et al . Spontaneous growth of Sn whiskers and a new formation mechanism [J]. Mater. Lett., 2016, 178: 111
87
Ali M S , Rayhan M A , Ali M A , et al . New MAX phase compound Mo2TiAlC2: First-principles study [J]. J. Sci. Res., 2016, 8: 109
88
Sun Z M , Barsoum M W , Zhang Y M , et al . On equilibrium Ga intergranular films in Cr2GaC [J]. Mater. Res. Lett., 2013, 1: 109
89
Liu Y S , Zhang P G , Yu J , et al . Confining effect of oxide film on tin whisker growth [J]. J. Mater. Sci. Technol., 2019, 35: 1735
90
Liu Y S , Lu C J , Zhang P G , et al . Mechanisms behind the spontaneous growth of tin whiskers on the Ti2SnC ceramics [J]. Acta Mater., 2020, 185: 433
91
Liao T , Wang J Y , Zhou Y C . Ab initio modeling of the formation and migration of monovacancies in Ti2AlC [J]. Scr. Mater., 2008, 59: 854
92
Wang S , Cheng J , Zhu S Y , et al . A novel route to prepare a Ti3SnC2/Al2O3 composite [J]. Scr. Mater., 2017, 131: 80
93
Liu B , Wang J Y , Zhang J , et al . Theoretical investigation of A-element atom diffusion in Ti2AC (A = Sn, Ga, Cd, In, and Pb) [J]. Appl. Phys. Lett., 2009, 94: 181906
94
Zhang J , Liu B , Wang J Y , et al . Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations [J]. J. Mater. Res., 2012, 24: 39
95
Chen K M , Wilcox G D . Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits [J]. Phys. Rev. Lett., 2005, 94: 066104
96
Chason E , Pei F , Jain N , et al . Studying the effect of grain size on whisker nucleation and growth kinetics using thermal strain [J]. J. Electron. Mater., 2019, 48: 17
97
Tang J W . The influence mechanism of alloying elements on whisker growth from Ti2SnC/Sn composite system [D]. Nanjing: Southeast University, 2020
Bramfitt B L . The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
99
Tang J W , Zhang P G , Liu Y S , et al . Selective growth of tin whiskers from its alloys on Ti2SnC [J]. J. Mater. Sci. Technol., 2020, 54: 206
100
Liu Y S , Lu C J , Zhang Y , et al . Effect of cultivation conditions on tin whisker growth on Ti2SnC [J]. J. Electron. Mater., 2021, 50: 1083
101
Xian A P , Liu M . Observations of continuous tin whisker growth in NdSn3 intermetallic compound [J]. J. Mater. Res., 2009, 24: 2775
102
Vasko A C , Warrell G R , Parsai E I , et al . Electron beam induced growth of tin whiskers [J]. J. Appl. Phys., 2015, 118: 125301
103
Oudat O , Arora V , Parsai E I , et al . Gamma- and X-ray accelerated tin whisker development [J]. J. Phys., 2020, 53D: 495305
104
Zhang P G , Tang J W , Sun Z M , et al . Purification method for low-melting-point metal [P]. Chin Pat, 201810677352.9, 2018
HAN Yumei; HAN Enhou;KE Wei (State Key Laboratory for Corrosion Science;Institute of Corrosion and Protection of Metals; Chinese Aeademy of Sciences;Shenyang)(Manuscript received 4 June; 1992). DETERMINATION OF FATIGUE RELIABILITY UNDER COMPLEX LOADING[J]. 金属学报, 1994, 30(4): 170-175.