Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (3): 295-310    DOI: 10.11900/0412.1961.2021.00119
Overview Current Issue | Archive | Adv Search |
Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates
TIAN Zhihua1, ZHANG Peigen1(), LIU Yushuang2, LU Chengjie1, DING Jianxiang3, SUN Zhengming1()
1.Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, China
3.Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, China
Cite this article: 

TIAN Zhihua, ZHANG Peigen, LIU Yushuang, LU Chengjie, DING Jianxiang, SUN Zhengming. Research Progress and Outlook of Metal Whisker Spontaneous Growth on MAX Phase Substrates. Acta Metall Sin, 2022, 58(3): 295-310.

Download:  HTML  PDF(2952KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The spontaneous growth of metal whiskers, most notably tin whiskers, has a long history, and the electronics industry has suffered greatly as a result. Pb additive had previously deactivated research on the whiskering phenomenon, but the toxicity of lead alarmed people at the beginning of the century. Nevertheless, intricate conditions involved in the whisker growth research and the multifarious phenomena have hampered the research on this topic; therefore, a comprehensive understanding of the metal whisker growth has been absent. A related whiskering phenomenon on MAX phase substrates has been investigated in recent years, and the occurrence of MAX phase, compared with the whisker growth on metallic substrates, exhibits good repeatability, a short incubation period, a fast growth rate, and rich composition varieties. Therefore, the MAX phase as a new platform of whisker growth investigation is expected to speed up the understanding of the mechanisms related to this phenomenon. Regarding the general background of spontaneous metal whisker growth and our group's current findings, this review summarizes the current status of spontaneous metal whisker growth on MAX phase substrates, discusses and describes the growth mechanism from the two main processes of crystal growth (nucleation and growth), and concludes with a perspective on future research and potential applications of spontaneous whisker growth on the MAX phase substrates.

Key words:  metal whisker      spontaneous growth      MAX phase      mitigation strategy      lead-free      reliability     
Received:  23 March 2021     
ZTFLH:  TQ174  
Fund: National Key Research and Development Program of China(2017YFE0301403);National Natural Science Foundation of China(51731004);Natural Science Foundation of Jiangsu Province(BK20201283)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00119     OR     https://www.ams.org.cn/EN/Y2022/V58/I3/295

Fig.1  Layered crystal structure of MAX phases
Fig.2  The constituent elements of the MAX phase known to date in the periodic table[55]
Fig.3  Ga whiskers grown on Cr2GaN[6]
Fig.4  The Ga whiskers or spheres very rapidly shrank back into the matrix leaving behind nanoribbons in Cr2GaC system[81]
Fig.5  Oxidation induced compressive stress model for whisker growth and its finite element simulation[12]
Fig.6  Ga whisker nucleation schematic diagram of catalysis-like mechanism[85]
Fig.7  Isotopic study of Sn whisker growth in Ti2SnC/120Sn system[82]
Fig.8  Microstructures of the interface between Sn whisker and Ti2SnC matrix[90]
Fig.9  Morphology evolution of a Sn whisker alternately cultivated in vacuum and air[89]
Fig.10  Sn whiskers cultured in vacuum (a, c) and the corresponding morphology simulation results (b, d)[90]
1 NASA . Tin whisker (and other metal whisker) homepage [EB/OL].
2 Franks J . Growth of whiskers in the solid phase [J]. Acta Metall., 1958, 6: 103
3 Zhao Z S , Xian A P . Mechanisms and questions of tin whisker growth [J]. Chin. J. Nonferrous Met., 2012, 22: 2267
赵子寿, 冼爱平 . 锡晶须生长机理研究的现状与问题 [J]. 中国有色金属学报, 2012, 22: 2267
4 Zhang P G , Zhang Y M , Sun Z M . Spontaneous growth of metal whiskers on surfaces of solids: A review [J]. J. Mater. Sci. Technol., 2015, 31: 675
5 Liu M , Xian A P . TEM observation of tin whisker [J]. Sci. China Technol. Sci., 2011, 54: 1546
6 Barsoum M W , Farber L . Room-temperature deintercalation and self-extrusion of Ga from Cr2GaN [J]. Science, 1999, 284: 937
7 El-Raghy T , Barsoum M W . Growing metallic whiskers: Alternative interpretation [J]. Science, 1999, 285: 1355
8 Hoffman E N , Barsoum M W , Wang W , et al . On the spontaneous growth of soft metallic whiskers [A]. Proceedings of the 51st IEEE Holm Conference on Electrical Contacts [C]. Chicago, IL, USA: IEEE, 2005: 121
9 Boettinger W J , Johnson C E , Bendersky L A , et al . Whisker and hillock formation on Sn, Sn-Cu and Sn-Pb electrodeposits [J]. Acta Mater., 2005, 53: 5033
10 Lin W C , Tseng T H , Liu W , et al . Effect of Sn film grain size and thickness on kinetics of spontaneous Sn whisker growth [J]. JOM, 2019, 71: 3041
11 Majumdar B S , Dutta I , Bhassyvasantha S , et al . Recent advances in mitigation of whiskers from electroplated tin [J]. JOM, 2020, 72: 906
12 Barsoum M W , Hoffman E N , Doherty R D , et al . Driving force and mechanism for spontaneous metal whisker formation [J]. Phys. Rev. Lett., 2004, 93: 206104
13 Shim W , Ham J , Lee K I , et al . On-film formation of Bi nanowires with extraordinary electron mobility [J]. Nano Lett., 2009, 9: 18
14 Cheng Y T , Weiner A M , Wong C A , et al . Stress-induced growth of bismuth nanowires [J]. Appl. Phys. Lett., 2002, 81: 3248
15 Sun Z M , Hashimoto H , Barsoum M W . On the effect of environment on spontaneous growth of lead whiskers from commercial brasses at room temperature [J]. Acta Mater., 2007, 55: 3387
16 Ellis W C . Morphology of whisker crystals of tin, zinc, and cadmium grown spontaneously from solid [J]. Trans. Metall. Soc. AIME, 1966, 236: 872
17 Davis J H . Growth of thallium whiskers [J]. J. Appl. Phys., 1968, 39: 5811
18 Tohmyoh H , Yasuda M , Saka M . Controlling Ag whisker growth using very thin metallic films [J]. Scr. Mater., 2010, 63: 289
19 Kosinova A , Wang D , Schaaf P , et al . Whiskers growth in thin passivated Au films [J]. Acta Mater., 2018, 149: 154
20 Saka M , Yamaya F , Tohmyoh H . Rapid and mass growth of stress-induced nanowhiskers on the surfaces of evaporated polycrystalline Cu films [J]. Scr. Mater., 2007, 56: 1031
21 Horváth B , Illés B , Shinohara T , et al . Copper-oxide whisker growth on tin-copper alloy coatings caused by the corrosion of Cu6Sn5 intermetallics [J]. J. Mater. Sci., 2013, 48: 8052
22 Matsumoto T , Harries D , Langenhorst F , et al . Iron whiskers on asteroid Itokawa indicate sulfide destruction by space weathering [J]. Nat. Commun., 2020, 11: 1117
23 Illés B , Skwarek A , Ratajczak J , et al . The influence of the crystallographic structure of the intermetallic grains on tin whisker growth [J]. J. Alloys Compd., 2019, 785: 774
24 Zhang Z H , Wei C W , Han J J , et al . Growth evolution and formation mechanism of η′-Cu6Sn5 whiskers on η-Cu6Sn5 intermetallics during room-temperature ageing [J]. Acta Mater., 2020, 183: 340
25 Hao H , Li G D , Shi Y W , et al . Study of rapid growth of tin whisker accelerated by rare earth Ce [J]. Rare Met. Mater. Eng., 2009, 38: 866
郝 虎, 李广东, 史耀武 等 . 稀土Ce加速Sn晶须生长的研究 [J]. 稀有金属材料与工程, 2009, 38: 866
26 Li C F , Liu Z Q . Microstructure and growth mechanism of tin whiskers on RESn3 compounds [J]. Acta Mater., 2013, 61: 589
27 Liu Y S , Zhang P G , Yang L , et al . Spontaneous Ga whisker formation on FeGa3 [J]. Prog. Nat. Sci. Mater., 2018, 28: 569
28 Cobb H L . Cadmium whiskers [J]. Mon. Rev. Am. Electroplaters Soc., 1946, 33: 28
29 Compton K G , Mendizza A , Arnold S M . Filamentary growths on metal surfaces—“Whiskers” [J]. Corrosion, 1951, 7: 327
30 Chason E , Jadhav N , Pei F , et al . Growth of whiskers from Sn surfaces: Driving forces and growth mechanisms [J]. Prog. Surf. Sci., 2013, 88: 103
31 George E , Pecht M . Tin whisker analysis of an automotive engine control unit [J]. Microelectron. Reliab., 2014, 54: 214
32 Mathew S , Osterman M , Shibutani T , et al . Tin whiskers: How to mitigate and manage the risks [A]. Proceedings of 2007 International Symposium on High Density Packaging and Microsystem Integration [C]. Shanghai, China: IEEE, 2007: 1
33 Li Y C , Sun M L , Ren S R , et al . The influence of non-uniform copper oxide layer on tin whisker growth and tin whisker growth behavior in SnAg microbumps with small diameter [J]. Mater. Lett., 2020, 258: 126773
34 NASA . Metal whisker photo gallery [EB/OL].
35 NASA . Whisker failures [EB/OL].
36 Arnold S M . The growth and properties of metal whiskers [A]. Proceedings of the 43rd Annual Convention of the American Electroplaters Society [C]. Washington, 1956: 26
37 Tu K N , Gusak A M , Li M . Physics and materials challenges for lead-free solders [J]. J. Appl. Phys., 2003, 93: 1335
38 Ruan Y , Ji X Q , Wen M , et al . Research progress of lead contamination detection technology in food [J]. Guizhou J. Anim. Husb. Vet. Med., 2012, 36(5): 12
阮 涌, 嵇辛勤, 文 明 等 . 食品中铅污染检测技术研究进展 [J]. 贵州畜牧兽医, 2012, 36(5): 12
39 Shangguan D K , translated by Liu J Y , Sun P . Lead-free Solder Interconnect Reliability [M]. Beijing: Publishing House of Electronics Industry, 2008: 352
上官东凯著, 刘建影, 孙 鹏 译. 无铅焊料互联及可靠性 [M]. 北京: 电子工业出版社, 2008: 352
40 Jagtap P , Chakraborty A , Eisenlohr P , et al . Identification of whisker grain in Sn coatings by analyzing crystallographic micro-texture using electron back-scatter diffraction [J]. Acta Mater., 2017, 134: 346
41 Meschter S J , Saha S K . Process for mitigation of whisker growth on a metallic substrate [P]. US Pat, 10907030, 2020
42 Liu S H , Ma L M , Shu Y T , et al . Growth behavior of whiskers in Sn-based lead-free solders [J]. Rare Met. Mater. Eng., 2015, 44: 2868
刘思涵, 马立民, 舒雨田 等 . Sn基无铅钎料晶须生长行为的研究 [J]. 稀有金属材料与工程, 2015, 44: 2868
43 Peach M O . Mechanism of growth of whiskers on cadmium [J]. J. Appl. Phys., 1952, 23: 1401
44 Eshelby J D . A tentative theory of metallic whisker growth [J]. Phys. Rev., 1953: 91: 755
45 Ellis W C , Gibbons D F , Treuning R C . Growth of Metal Whiskers from the Solid, Growth and Perfection of Crystals [M]. New York: John Wiley & Sons, 1958: 102
46 Vianco P T , Cummings D P , Kotula P G , et al . Mitigation of long whisker growth based upon the dynamic recrystallization mechanism [J]. J. Electron. Mater., 2019, 49: 888
47 Tu K N . Irreversible processes of spontaneous whisker growth in bimetallic Cu-Sn thin-film reactions [J]. Phys. Rev., 1994, 49B: 2030
48 Howard H P , Cheng J , Vianco P T , et al . Interface flow mechanism for tin whisker growth [J]. Acta Mater., 2011, 59: 1957
49 Glazunova V K . A study of the influence of certain factors on the growth of filamentary tin crystals [J]. Kristallografiya, 1962, 7: 761
50 Shibutani T , Yu Q , Yamashita T , et al . Stress-induced tin whisker initiation under contact loading [J]. IEEE Trans. Electron. Packag. Manuf., 2006, 29: 259
51 Jagtap P , Jain N , Chason E . Whisker growth under a controlled driving force: Pressure induced whisker nucleation and growth [J]. Scr. Mater., 2020, 182: 43
52 Liu Y S . Mechanisms behind the spontaneous A-site metal whisker gtowth on MAX phases [D]. Nanjing: Southeast University, 2019
刘玉爽 . MAX相中A位金属晶须自发生长机理研究 [D]. 南京: 东南大学, 2019
53 Zhang P , Liu Y , Ding J , et al . Controllable growth of Ga wires from Cr2GaC-Ga and its mechanism [J]. Physica, 2015, 475B: 90
54 Barsoum M W . MAX Phases: Properties of Machinable Ternary Carbides and Nitrides [M]. Weinheim: John Wiley & Sons, 2013: 1
55 Sokol M , Natu V , Kota S , et al . On the chemical diversity of the MAX phases [J]. Trend. Chem., 2019, 1: 210
56 Sun Z M . Progress in research and development on MAX phases: A family of layered ternary compounds [J]. Inter. Mater. Rev., 2011, 56: 143
57 Magnuson M , Mattesini M . Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory [J]. Thin Solid Films, 2017, 621: 108
58 Jeitschko W , Nowotny H , Benesovsky F , et al . Die H-phasen Ti2InC, Zr2InC, Hf2InC und Ti2GeC [J]. Monatsh. Chem., 1963, 94: 1201
59 Barsoum M W , Farber L , Levin I , et al . High-resolution transmission electron microscopy of Ti4AlN3, or Ti3Al2N2 revisited [J]. J. Am. Ceram. Soc., 1999, 82: 2545
60 Procopio A T , Barsoum M W , El-Raghy T . Characterization of Ti4AlN3 [J]. Metall. Mater. Trans., 2000, 31A: 333
61 Barsoum M W , El-Raghy T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2 [J]. J. Am. Ceram. Soc., 1996, 79: 1953
62 Barsoum M W . The MN + 1 AXN phases: A new class of solids: Thermodynamically stable nanolaminates [J]. Prog. Solid State Chem., 2000, 28: 201
63 Lin Z J , Zhuo M J , Zhou Y C , et al . Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides [J]. J. Am. Ceram. Soc., 2006, 89: 3765
64 Zheng L Y , Wang J M , Lu X P , et al . (Ti0.5Nb0.5)5AlC4: A new-layered compound belonging to MAX phases [J]. J. Am. Ceram. Soc., 2010, 93: 3068
65 Palmquist J P , Li S , Persson P O Å , et al . Mn + 1 AXn phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations [J]. Phys. Rev., 2004, 70B: 165401
66 Naguib M , Kurtoglu M , Presser V , et al . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Adv. Mater., 2011, 23: 4248
67 Verger L , Xu C , Natu V , et al . Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides [J]. Curr. Opin. Solid State Mater. Sci., 2019, 23: 149
68 Verger L , Natu V , Carey M , et al . MXenes: An introduction of their synthesis, select properties, and applications [J]. Trend. Chem., 2019, 1: 656
69 Li M , Huang Q . Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes [J]. J. Inorg. Mater., 2020, 35: 1
李 勉, 黄 庆 . 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望 [J]. 无机材料学报, 2020, 35: 1
70 Sun Z M , Hashimoto H , Tian W B , et al . Synthesis of the MAX phases by pulse discharge sintering [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 704
71 Li M , Li Y B , Luo K , et al . Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach [J]. J. Inorg. Mater., 2019, 34: 60
李 勉, 李友兵, 罗 侃 等 . 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2 [J]. 无机材料学报, 2019, 34: 60
72 Whittle K R , Blackford M G , Aughterson R D , et al . Radiation tolerance of Mn + 1 AXn phases, Ti3AlC2 and Ti3SiC2 [J]. Acta Mater., 2010, 58: 4362
73 Ding J X , Tian W B , Wang D D , et al . Microstructure evolution, oxidation behavior and corrosion mechanism of Ag/Ti2SnC composite during dynamic electric arc discharging [J]. J. Alloys Compd., 2019, 785: 1086
74 Wu J Y , Zhou Y C , Wang J Y . Tribological behavior of Ti2SnC particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2006, A422: 266
75 Shahzad F , Alhabeb M , Hatter C B , et al . Electromagnetic interference shielding with 2D transition metal carbides (MXenes) [J]. Science, 2016, 353: 1137
76 Ghidiu M , Lukatskaya M R , Zhao M Q , et al . Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance [J]. Nature, 2014, 516: 78
77 Kamysbayev V , Filatov A S , Hu H C , et al . Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes [J]. Science, 2020, 369: 979
78 Liu Y , Zhang P , Ling C , et al . Spontaneous Sn whisker formation on Ti2SnC [J]. J. Mater. Sci.: Mater. Electron., 2017, 28: 5788
79 Zhang H B , Zhang J , Zhou Y C , et al . Synthesis of AlN nanowires by nitridation of Ti3Si0.9Al0.1C2 solid solution [J]. J. Mater. Res., 2007, 22: 561
80 Sun Z M , Gupta S , Ye H , et al . Spontaneous growth of freestanding Ga nanoribbons from Cr2GaC surfaces [J]. J. Mater. Res., 2005, 20: 2618
81 Sun Z M , Barsoum M W . Alternate mechanism for the spontaneous formation of freestanding Ga nanoribbons on Cr2GaC surfaces [J]. J. Mater. Res., 2006, 21: 1629
82 Lu C J , Liu Y S , Fang J , et al . Isotope study reveals atomic motion mechanism for the formation of metal whiskers in MAX phase [J]. Acta Mater., 2021, 203: 116475
83 Zhang Y , Lu C J , Liu Y S , et al . The effect of Bi addition on the formation of metal whiskers in Ti2SnC/Sn-xBi system [J]. Vacuum, 2020, 182: 109764
84 Chuang T H . Rapid whisker growth on the surface of Sn-3Ag-0.5Cu-1.0Ce solder joints [J]. Scr. Mater., 2006, 55: 983
85 Zhang P , Shen L W , Ouyang J , et al . Room temperature mushrooming of gallium wires and its growth mechanism [J]. J. Alloys Compd., 2015, 619: 488
86 Liu Y , Zhang P , Zhang Y M , et al . Spontaneous growth of Sn whiskers and a new formation mechanism [J]. Mater. Lett., 2016, 178: 111
87 Ali M S , Rayhan M A , Ali M A , et al . New MAX phase compound Mo2TiAlC2: First-principles study [J]. J. Sci. Res., 2016, 8: 109
88 Sun Z M , Barsoum M W , Zhang Y M , et al . On equilibrium Ga intergranular films in Cr2GaC [J]. Mater. Res. Lett., 2013, 1: 109
89 Liu Y S , Zhang P G , Yu J , et al . Confining effect of oxide film on tin whisker growth [J]. J. Mater. Sci. Technol., 2019, 35: 1735
90 Liu Y S , Lu C J , Zhang P G , et al . Mechanisms behind the spontaneous growth of tin whiskers on the Ti2SnC ceramics [J]. Acta Mater., 2020, 185: 433
91 Liao T , Wang J Y , Zhou Y C . Ab initio modeling of the formation and migration of monovacancies in Ti2AlC [J]. Scr. Mater., 2008, 59: 854
92 Wang S , Cheng J , Zhu S Y , et al . A novel route to prepare a Ti3SnC2/Al2O3 composite [J]. Scr. Mater., 2017, 131: 80
93 Liu B , Wang J Y , Zhang J , et al . Theoretical investigation of A-element atom diffusion in Ti2 AC (A = Sn, Ga, Cd, In, and Pb) [J]. Appl. Phys. Lett., 2009, 94: 181906
94 Zhang J , Liu B , Wang J Y , et al . Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations [J]. J. Mater. Res., 2012, 24: 39
95 Chen K M , Wilcox G D . Observations of the spontaneous growth of tin whiskers on tin-manganese alloy electrodeposits [J]. Phys. Rev. Lett., 2005, 94: 066104
96 Chason E , Pei F , Jain N , et al . Studying the effect of grain size on whisker nucleation and growth kinetics using thermal strain [J]. J. Electron. Mater., 2019, 48: 17
97 Tang J W . The influence mechanism of alloying elements on whisker growth from Ti2SnC/Sn composite system [D]. Nanjing: Southeast University, 2020
唐静雯 . 合金元素对Ti2SnC/Sn复合体系中Sn晶须生长行为的影响机制 [D]. 南京: 东南大学, 2020
98 Bramfitt B L . The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metall. Mater. Trans., 1970, 1B: 1987
99 Tang J W , Zhang P G , Liu Y S , et al . Selective growth of tin whiskers from its alloys on Ti2SnC [J]. J. Mater. Sci. Technol., 2020, 54: 206
100 Liu Y S , Lu C J , Zhang Y , et al . Effect of cultivation conditions on tin whisker growth on Ti2SnC [J]. J. Electron. Mater., 2021, 50: 1083
101 Xian A P , Liu M . Observations of continuous tin whisker growth in NdSn3 intermetallic compound [J]. J. Mater. Res., 2009, 24: 2775
102 Vasko A C , Warrell G R , Parsai E I , et al . Electron beam induced growth of tin whiskers [J]. J. Appl. Phys., 2015, 118: 125301
103 Oudat O , Arora V , Parsai E I , et al . Gamma- and X-ray accelerated tin whisker development [J]. J. Phys., 2020, 53D: 495305
104 Zhang P G , Tang J W , Sun Z M , et al . Purification method for low-melting-point metal [P]. Chin Pat, 201810677352.9, 2018
张培根, 唐静雯, 孙正明 等 . 一种低熔点金属提纯方法 [P]. 中国专利, 201810677352.9, 2018)
105 Zhang P G , Tang J W , Sun Z M , et al . Preparation method of dimension-control GaO nanometer tubes [P]. Chin Pat, 201910071310.5, 2019
张培根, 唐静雯, 孙正明 等 . 一种尺寸可控GaO纳米管的制备方法 [P]. 中国专利, 201910071310.5, 2019)
[1] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[2] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[3] Jianxiang DING,Wubian TIAN,Dandan WANG,Peigen ZHANG,Jian CHEN,Zhengming SUN. Arc Erosion and Degradation Mechanism ofAg/Ti2AlC Composite[J]. 金属学报, 2019, 55(5): 627-637.
[4] HANG Chunjin, TIAN Yanhong,ZHAO Xin, WANG Chunqing. RESEARCH ON MICROSTRUCTURE OF Pb-FREE BGA SOLDER JOINT ASSEMBLED WITH Sn-Pb SOLDER DURING ISOTHERMAL AGING[J]. 金属学报, 2013, 49(7): 831-837.
[5] XU Jiayu CHEN Hongtao LI Mingyu. STUDY ON LEAD-FREE SOLDER JOINT RELIABILITY BASED ON GRAIN ORIENTATION[J]. 金属学报, 2012, 48(9): 1042-1048.
[6] LI Xunping ZHOU Minbo XIA Jianmin MA Xiao ZHANG Xinping. EFFECT OF THE CROSS-INTERACTION ON THE FORMATION AND EVOLUTION OF INTERMETALLIC COMPOUNDS IN Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA STRUCTURE SOLDER JOINTS[J]. 金属学报, 2011, 47(5): 611-619.
[7] ZHOU Minbo LI Xunping MA Xiao ZHANG Xinping. EARLY INTERFACIAL REACTION AND UNDERCOOLING SOLIDIFICATION BEHAVIOR  OF Sn-3.5Ag/Cu SYSTEM[J]. 金属学报, 2010, 46(5): 569-574.
[8] TIAN Yanhong YANG Shihua WANG Chunqing WANG Xuelin LIN Pengrong. VOLUME EFFECT OF SHEAR FRACTURE BEHAVIOR OF Sn3.0Ag0.5Cu/Cu LEAD-FREE SOLDER JOINTS[J]. 金属学报, 2010, 46(3): 366-371.
[9] ZHAO Jie LI Dongming FANG Yuanyuan. STATISTICAL ANALYSIS AND RELIABILITY PREDICTION OF CREEP RUPTURE PROPERTY FOR T91/P91 STEEL[J]. 金属学报, 2009, 45(7): 835-839.
[10] Zhao Ning. THE LIQUID STRUCTURE OF SN-CU LEAD-FREE SOLDERS[J]. 金属学报, 2008, 44(4): 467-472 .
[11] LIU Bo; TANG Wenjin; SONG Zhongxiao; XU Kewei. Microstructure and Thermal Stability of CuSiN Self--Aligned Layerin Advanced Copper Interconnect Multilayer Films[J]. 金属学报, 2007, 43(11): 1145-1147 .
[12] Tang Xingyong. Effects of Aging on Structures and Shear Strength of Interface of Sn-Ag-Cu Solder/Ni--P Plating Layer[J]. 金属学报, 2006, 42(2): 205-210 .
[13] . DEWETTING OF SnAgCu LEAD-FREE SOLDER LIQUID ON NON-WETTING LINE[J]. 金属学报, 2006, 42(12): 1298-1302 .
[14] HAN Yumei; HAN Enhou;KE Wei (State Key Laboratory for Corrosion Science;Institute of Corrosion and Protection of Metals; Chinese Aeademy of Sciences;Shenyang)(Manuscript received 4 June; 1992). DETERMINATION OF FATIGUE RELIABILITY UNDER COMPLEX LOADING[J]. 金属学报, 1994, 30(4): 170-175.
No Suggested Reading articles found!