Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (3): 321-328    DOI: 10.3724/SP.J.1037.2011.00601
论文 Current Issue | Archive | Adv Search |
EFFECT OF ELECTROMIGRATION ON INTERFACIAL REACTION IN Ni/Sn3.0Ag0.5Cu/Cu FLIP CHIP SOLDER JOINTS
HUANG Mingliang, CHEN Leida, ZHOU Shaoming
School of Materials Science & Engineering, Dalian University of Technology, Dalian 116024
Cite this article: 

HUANG Mingliang CHEN Leida ZHOU Shaoming. EFFECT OF ELECTROMIGRATION ON INTERFACIAL REACTION IN Ni/Sn3.0Ag0.5Cu/Cu FLIP CHIP SOLDER JOINTS. Acta Metall Sin, 2012, 48(3): 321-328.

Download:  PDF(5540KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effect of electromigration (EM) on the interfacial reaction in Ni/Sn3.0Ag0.5Cu/Cu solder joints was investigated under a current density of 5.0×103 A/cm2 at 150 ℃. All solder joints were aged at 150 ℃ for comparison purpose. It has been found that the (Cu, Ni)6Sn5 intermetallic compounds (IMCs) form at both solder/Ni and solder/Cu interfaces in the as-reflowed state. During aging at 150 ℃, the thickness of interfacial IMC increases with increasing aging time, and no interfacial IMC transformation occurs even after aging for 800 h. The flowing direction of electrons plays an important role in Cu consumption. When electrons flow from printed circuit board (PCB) to chip, the current crowding effect induces a rapid and localized dissolution of Cu pad on PCB and a formation of microcrack at the Sn3.0Ag0.5Cu/(Cu, Ni)6Sn5 interface. The dissolved Cu atoms are driven towards anode by EM, and a large amount of Cu6Sn5 IMC particles form in solder matrix along the flowing direction of electrons. When electrons flow from chip to PCB, no obvious consumption of Ni underbump metallogy (UBM) has been observed and few Cu6Sn5 IMC particles form in solder matrix near the anode interface. There is no evidence of failure induced by EM in solder joints even after EM for 800 h. To sum up, EM enhances the growth of interfacial (Cu, Ni)6Sn5 at anode side, no matter how the direction of electrons is. The interfacial IMC at anode side is thicker than that at cathode side. The Ni/Sn3.0Ag0.5Cu/Cu solder joint is prone to fail when electrons flowing from Cu to Ni.
Key words:  electromigration      Ni/Sn3.0Ag0.5Cu/Cu      interfacial reaction      intermetallic compound     
Received:  23 September 2011     
Fund: 

Supported by National Natural Science Foundation of China (No.U0734006) and Natural Science Foundation of Liaoning Province (No.20082163)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00601     OR     https://www.ams.org.cn/EN/Y2012/V48/I3/321

[1] Zeng K, Tu K N. Mater Sci Eng Rep, 2002; 38(2): 55

[2] Chen C, Tong H M, Tu K N. Annu Rev Mater Res, 2010; 40: 531

[3] Tu K N, Gusak A M, Li M. J Appl Phys, 2003; 93: 1335

[4] He HW, Xu G C, Guo F. Acta Metall Sin, 2009; 45: 744

(何洪文, 徐广臣, 郭 福. 金属学报, 2009; 45: 744)

[5] Gan H, Tu K N. J Appl Phys, 2005; 97: 063514

[6] Yang Q L, Shang J K. J Electron Mater, 2005; 34: 1363

[7] Lin Y H, Hu Y C, Tsai C M, Kao C R, Tu K N. Acta Mater, 2005; 53: 2029

[8] Lu Y D, He X Q, En Y F, Wang X, Zhuang Z Q. Acta Metall Sin, 2009; 45: 178

(陆裕东, 何小琦, 恩云飞, 王歆, 庄志强. 金属学报, 2009; 45: 178)

[9] Zhang L Y, Ou S Q, Huang J, Tu K N, Gee S, Nguyen L. Appl Phys Lett, 2006; 88: 012106

[10] Hung Y M, Chen C M. J Electron Mater, 2008; 37: 887

[11] Hu Y C, Lin Y H, Kao C R, Tu K N. J Mater Res, 2003; 18: 2544

[12] Chen L D, Huang M L, Zhou S M. J Alloys Compd, 2010; 504: 535

[13] Zhang X F, Guo J D, Shang J K. J Mater Res, 2008; 23: 3370

[14] Zhang F, Li M, Chum C C, Tung C H. J Mater Res, 2003; 18: 1333

[15] Wang S J, Liu C Y. J Electron Mater, 2003; 32: 1303

[16] Wang S J, Liu C Y. J Electron Mater, 2006; 35: 1955

[17] Chen H T,Wang C Q, Yan C, Li M Y, Huang Y. J Electron Mater, 2007; 36: 26

[18] Hong K K, Ryu J B, Park C Y, Huh J Y. J Electron Mater, 2008; 37: 61

[19] Chang C W, Yang S C, Tu C T, Kao C R. J Electron Mater, 2007; 36: 1455

[20] Zhang X F, Guo J D, Shang J K. J Electron Mater, 2009; 38: 425

[21] Wu W H, Chung H L, Chen C N, Ho C E. J Electron Mater, 2009; 38: 2563

[22] Lee T Y, Tu K N, Frear D R. J Appl Phys, 2001; 90: 4502

[23] Harcuba P, Janecek M. J Electron Mater, 2010; 39: 2553

[24] Tsai J Y, Hu Y C, Tsai C M, Kao C R. J Electron Mater, 2003; 32: 1203

[25] Yeh E C C, Choi W J, Tu K N, Elenius P, Balkan H. Appl Phys Lett, 2002; 80: 580

[26] Ho P S, Kwok T. Rep Prog Phys, 1989; 52: 301

[27] Huang J R, Tsai C M, Lin Y W, Kao C R. J Mater Res, 2008; 23: 250
[1] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[2] SONG Qingzhong, QIAN Kun, SHU Lei, CHEN Bo, MA Yingche, LIU Kui. Interfacial Reaction Between Nickel-Based Superalloy K417G and Oxide Refractories[J]. 金属学报, 2022, 58(7): 868-882.
[3] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[4] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[5] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[6] ZHANG Zhijie, HUANG Mingliang. In Situ Study on Liquid-Solid Electromigration Behavior in Cu/Sn-37Pb/Cu Micro-Interconnect[J]. 金属学报, 2020, 56(10): 1386-1392.
[7] Hua JI,Yunlai DENG,Hongyong XU,Weiqiang GUO,Jianfeng DENG,Shitong FAN. The Influence of Welding Line Energy on the Microstructure and Property of CMT Overlap Joint of 5182-Oand HC260YD+Z[J]. 金属学报, 2019, 55(3): 376-388.
[8] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
[9] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[10] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[11] Feng QIU, Haotian TONG, Ping SHEN, Xiaoshuang CONG, Yi WANG, Qichuan JIANG. Overview: SiC/Al Interface Reaction and Interface Structure Evolution Mechanism[J]. 金属学报, 2019, 55(1): 87-100.
[12] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[13] Min ZHANG, Erlong MU, Xiaowei WANG, Ting HAN, Hailong LUO. Microstructure and Mechanical Property of the Welding Joint of TA1/Cu/ X65 Trimetallic Sheets[J]. 金属学报, 2018, 54(7): 1068-1076.
[14] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[15] Ning ZHAO,Jianfeng DENG,Yi ZHONG,Luqiao YIN. Evolution of Interfacial Intermetallic Compounds in Ni/Sn-xCu/Ni Micro Solder Joints Under Thermomigration During Soldering[J]. 金属学报, 2017, 53(7): 861-868.
No Suggested Reading articles found!