Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (4): 541-560    DOI: 10.11900/0412.1961.2024.00355
Overview Current Issue | Archive | Adv Search |
Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design
WANG Chenchong, XU Wei()
State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
Cite this article: 

WANG Chenchong, XU Wei. Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design. Acta Metall Sin, 2025, 61(4): 541-560.

Download:  HTML  PDF(2632KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rise of data-driven methods as the fourth scientific paradigm, their impact on the third paradigm—physical model-driven approaches—has been significant in the field of alloy design. However, neither paradigm can overcome the trade-off between model accuracy and interpretability, particularly in mechanical performance design. As a consequence, they fail to meet the efficiency and rationality requirements necessary for alloy development within Material Genome Engineering, especially for metal structural materials. This challenge has led to the emergence of the fifth paradigm, AI4Sci, in alloy design. This article provides an overview of various cases employing the physical metallurgy-guided artificial intelligence method system. It systematically explains how to integrate physical models and mechanisms with artificial intelligence at three levels: numerical data guidance, image data guidance, and mechanism guidance. This approach aims to resolve the inherent trade-off between accuracy and interpretability in alloy design. In addition, it explores the theoretical foundations, advantages, and limitations of three paradigms—multi-scale physical models, artificial intelligence, and AI4Sci—within the field. For cross-scale modeling and materials science large models, this article offers insights into conceptual frameworks and technical methodologies for the future development of each scientific paradigm in alloy design.

Key words:  alloy design      material genome engineering      artificial intelligence      cross scale modeling      AI4Sci     
Received:  22 October 2024     
ZTFLH:  TG111.8  
Fund: National Key Research and Development Program of China(2023YFB3712403);National Natural Science Foundation of China(U22A20106, 52311530082)
Corresponding Authors:  XU Wei, professor, Tel: (024)83680246, E-mail: xuwei@ral.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00355     OR     https://www.ams.org.cn/EN/Y2025/V61/I4/541

Fig.1  Essential nature of the mutually exclusive relationship between model interpretability and accuracy
(a) trade-off between model accuracy and interpretability (AI—artificial intelligence)
(b) high degrees of freedom in equations
(c) low degrees of freedom in equations
(d) high degrees of freedom in equations constrained by physics
Fig.2  Quantitative effect of dimensionality reduction methods on model accuracy[29-32] (PCA—principal components analysis, KPCA—kernel based principal component analysis, t-SNE—t-distributed stochastic neighbor embedding, ISOMAP—Isometric Mapping)
Fig.3  Cross scale system of physical metallurgy-guided artificial intelligence (ML—machine learning, Vm—mole fraction, UTS—ultimate tensile strength, UE—uniform elongation, BC—band contrast, KAM—kernel average misorientation, CAM—Class Activation Mapping)
Fig.4  Comparisons of accuracy and extensibility of martensite transformation start temperature (Ms) computation models[43] (MAE—mean absolute error, SVM—support vector machine, DDM-CNN—deep data mining guided convolutional neural network)
Fig.5  Paradigm of thermodynamic mechanism information-guided artificial intelligence for alloy design[10,46-54] (ANN—artificial neural network)
Fig.6  Paradigm of multi-scale mechanism information-guided artificial intelligence for design[60-67] (DFT—density functional theory, FEM—finite element model)
Fig.7  Comparisons of algorithms for guiding artificial intelligence with image core information[73-75] (DL—deep learning, SAM—segment anything model, ML1 and ML2 represent different machine learning models for regression)
(a1-a12) large sample, low accuracy
(b1-b5) small sample, high accuracy
(c1-c16) no sample, medium accuracy
Fig.8  Various multimodal algorithm frameworks and their advantages and disadvantages
Fig.9  Mechanism correlation and data requirements of various image algorithms[73,76,87,90]
Fig.10  Methods and applications of mechanism guided artificial intelligence (PINN—physics-informed neural network, NN—neural network, PDE—partial differential equation, MSE—mean squared error. x—spatial variable, t—temporal variable, w—weight, b—bias, σ—activation function, u—solution of the partial differential equation and also the output of the neural network, L—differential operator, g—known function on the right-hand side of the partial differential equation, θ—parameter set of the partial differential equation, R—residual value, ε—threshold. MSE{u, BC, IC}—mean squared error of the solution u when considering boundary conditions (BC) and initial conditions (IC), MSER is the mean squared error based on the R)
Fig.11  Future development directions of the five scientific paradigms in the field of alloy design
1 Liao M Q, Wang Y, Wang Y, et al. Zentropy theory: Bridging materials gene to materials properties [J]. Acta Metall. Sin., 2024, 60: 1379
doi: 10.11900/0412.1961.2024.00147
廖名情, 王 毅, 王 义 等. 叠熵理论: 从材料基因到材料性能 [J]. 金属学报, 2024, 60: 1379
doi: 10.11900/0412.1961.2024.00147
2 Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
3 Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
4 Peng G C Y, Alber M, Tepole A B, et al. Multiscale modeling meets machine learning: What can we learn? [J]. Arch. Comput. Methods Eng., 2021, 28: 1017
5 Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
6 Zhang X, Wang L M, Helwig J, et al. Artificial intelligence for science in quantum, atomistic, and continuum systems [DB/OL]. arXiv: 2307. 08423, 2023
7 Cui P, Athey S. Stable learning establishes some common ground between causal inference and machine learning [J]. Nat. Mach. Intell., 2022, 4: 110
8 Zhong X T, Gallagher B, Liu S S, et al. Explainable machine learning in materials science [J]. npj Comput. Mater., 2022, 8: 204
9 Shen C G, Wang C C, Rivera-Díaz-del-Castillo P E J, et al. Discovery of marageing steels: Machine learning vs. physical metallurgical modelling [J]. J. Mater. Sci. Technol., 2021, 87: 258
10 Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
11 Guo A X Y, Cheng L J, Zhan S, et al. Biomedical applications of the powder‐based 3D printed titanium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 125: 252
doi: 10.1016/j.jmst.2021.11.084
12 Cisternas L A, Lucay F A, Botero Y L. Trends in modeling, design, and optimization of multiphase systems in minerals processing [J]. Minerals, 2020, 10: 22
13 Huang L, Ruan S, Xing Y C, et al. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods [J]. Med. Image Anal., 2024, 97: 103223
14 Szymanski N J, Rendy B, Fei Y X, et al. An autonomous laboratory for the accelerated synthesis of novel materials [J]. Nature, 2023, 624: 86
15 Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
doi: 10.1038/ncomms11241 pmid: 27079901
16 Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on Bayesian optimization sampling [J]. Acta Metall. Sin., 2021, 57: 797
doi: 10.11900/0412.1961.2020.00298
赵婉辰, 郑 晨, 肖 斌 等. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 [J]. 金属学报, 2021, 57: 797
doi: 10.11900/0412.1961.2020.00298
17 Gawlikowski J, Tassi C R N, Ali M, et al. A survey of uncertainty in deep neural networks [J]. Artif. Intell. Rev., 2023, 56(suppl.1) : 1513
18 Kurz A, Hauser K, Mehrtens H A, et al. Uncertainty estimation in medical image classification: Systematic review [J]. JMIR Med. Inf., 2022, 10: e36427
19 Jospin L V, Laga H, Boussaid F, et al. Hands-on Bayesian neural networks—A tutorial for deep learning users [J]. IEEE Comput. Intell. Mag., 2022, 17: 29
20 Venkatraman A, de Oca Zapiain D M, Kalidindi S R. Reduced-order models for ranking damage initiation in dual-phase composites using Bayesian neural networks [J]. JOM, 2020, 72: 4359
doi: 10.1007/s11837-020-04387-y
21 Wu S W, Zhou X G, Chen Q Y, et al. Development of constitutive models for extrapolative prediction of Nb-Ti micro alloyed steel [J]. Steel Res. Int., 2017, 88: 1700082
22 Muth A, Venkatraman A, John R, et al. Neighborhood spatial correlations and machine learning classification of fatigue hot-spots in Ti-6Al-4V [J]. Mech. Mater., 2023, 182: 104679
23 He Z C, Huo S L, Li E, et al. Data-driven approach to characterize and optimize properties of carbon fiber non-woven composite materials [J]. Compos. Struct., 2022, 297: 115961
24 Norris C, Ayyaswamy A, Vishnugopi B S, et al. Uncertainty quantification and propagation in lithium-ion battery electrodes using Bayesian convolutional neural networks [J]. Energy Storage Mater., 2024, 67: 103251
25 Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J]. Inf. Fusion, 2023, 99: 101805
26 Hassija V, Chamola V, Mahapatra A, et al. Interpreting black-box models: A review on explainable artificial intelligence [J]. Cogn. Comput., 2024, 16: 45
27 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [A]. 31st International Conference on Neural Information Processing Systems [C]. Long Beach: Curran Associates Inc., 2017
28 Xu P C, Ji X B, Li M J, et al. Small data machine learning in materials science [J]. npj Comput. Mater., 2023, 9: 42
29 Ikram S T, Cherukuri A K. Improving accuracy of intrusion detection model using PCA and optimized SVM [J]. J. Comput. Inf. Technol., 2016, 24: 133
30 He F, Zhang L Y. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network [J]. J. Process Control, 2018, 66: 51
31 Xue J L, Chen Y C, Li O, et al. Classification and identification of unknown network protocols based on CNN and T-SNE [J]. J. Phys.: Conf. Ser., 2020, 1617: 012071
32 Gallos I K, Gkiatis K, Matsopoulos G K, et al. ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia [J]. AIMS Neurosci., 2021, 8: 295
doi: 10.3934/Neuroscience.2021016 pmid: 33709030
33 Jiang L, Fu H D, Zhang H T, et al. Physical mechanism interpretation of polycrystalline metals' yield strength via a data-driven method: A novel Hall-Petch relationship [J]. Acta Mater., 2022, 231: 117868
34 Baskes M I. The status role of modeling and simulation in materials science and engineering [J]. Curr. Opin. Solid State Mater. Sci., 1999, 4: 273
35 Elliott J A. Novel approaches to multiscale modelling in materials science [J]. Int. Mater. Rev., 2011, 56: 207
36 Chen Z, Haykin S. On different facets of regularization theory [J]. Neural Comput., 2002, 14: 2791
pmid: 12487794
37 Lu Q, Xu W, van der Zwaag S. The design of a compositionally robust martensitic creep-resistant steel with an optimized combination of precipitation hardening and solid-solution strengthening for high-temperature use [J]. Acta Mater., 2014, 77: 310
38 Wang C C, Wei X L, Ren D, et al. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm [J]. Mater. Des., 2022, 213: 110326
39 Li Y, Martín D S, Wang J L, et al. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91: 200
doi: 10.1016/j.jmst.2021.03.020
40 Stormvinter A, Borgenstam A, Ågren J. Thermodynamically based prediction of the martensite start temperature for commercial steels [J]. Metall. Mater. Trans., 2012, 43A: 3870
41 Lee S J, Park K S. Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
42 Rahaman M, Mu W Z, Odqvist J, et al. Machine learning to predict the martensite start temperature in steels [J]. Metall. Mater. Trans., 2019, 50A: 2081
43 Wang C C, Zhu K Y, Hedström P, et al. A generic and extensible model for the martensite start temperature incorporating thermodynamic data mining and deep learning framework [J]. J. Mater. Sci. Technol., 2022, 128: 31
doi: 10.1016/j.jmst.2022.04.014
44 Ghosh G, Olson G B. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
45 Lu Q, Liu S L, Li W, et al. Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
46 Kannan R, Nandwana P. Accelerated alloy discovery using synthetic data generation and data mining [J]. Scr. Mater., 2023, 228: 115335
47 Zhang S J, Yi W, Zhong J, et al. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility [J]. Materials, 2023, 16: 306
48 Zou H, Tian Y Y, Zhang L G, et al. Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys [J]. Rare Met., 2024, 43: 309
49 Fu H, Gao T C, Gao J B, et al. Breaking hardness and electrical conductivity trade-off in Cu-Ti alloys through machine learning and Pareto front [J]. Mater. Res. Lett., 2024, 12: 580
50 Zhang W L, Tang Y, Gao J H, et al. Determination of hardness and Young's modulus in fcc Cu-Ni-Sn-Al alloys via high-throughput experiments, CALPHAD approach and machine learning [J]. J. Mater. Res. Technol., 2024, 30: 5381
51 Liu X L, Zhang J X, Pei Z R. Machine learning for high-entropy alloys: Progress, challenges and opportunities [J]. Prog. Mater. Sci., 2023, 131: 101018
52 Xu B, Yin H Q, Jiang X, et al. Data-driven design of Ni-based turbine disc superalloys to improve yield strength [J]. J. Mater. Sci. Technol., 2023, 155: 175
doi: 10.1016/j.jmst.2023.01.032
53 Lu S, Zou M, Zhang X R, et al. Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys [J]. Adv. Eng. Mater., 2023, 25: 2201257
54 Trehern W, Ortiz-Ayala R, Atli K C, et al. Data-driven shape memory alloy discovery using Artificial Intelligence Materials Selection (AIMS) framework [J]. Acta Mater., 2022, 228: 117751
55 Zeng Y Z, Man M R, Bai K W, et al. Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method [J]. Acta Mater., 2022, 231: 117865
56 Jin X Z, Luo H, Wang X F, et al. Data mining accelerated the design strategy of high-entropy alloys with the largest hardness based on genetic algorithm optimization [J]. MGE Adv., 2024, 2: e49
57 Vazquez G, Singh P, Sauceda D, et al. Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys [J]. Acta Mater., 2022, 232: 117924
58 Wen C, Wang C X, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning [J]. Acta Mater., 2021, 212: 116917
59 Li Z, Nash W T, O'Brien S P, et al. cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys [J]. J. Mater. Sci. Technol., 2022, 125: 81
doi: 10.1016/j.jmst.2022.03.008
60 Zhang H T, Fu H D, Zhu S C, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys [J]. Acta Mater., 2021, 215: 117118
61 He J J, Li J J, Liu C B, et al. Machine learning identified materials descriptors for ferroelectricity [J]. Acta Mater., 2021, 209: 116815
62 Hartnett T Q, Sharma V, Garg S, et al. Accelerated design of MTX alloys with targeted magnetostructural properties through interpretable machine learning [J]. Acta Mater., 2022, 231: 117891
63 Wang C C, Zhang Z, Jing X Y, et al. Optimization of multistage femtosecond laser drilling process using machine learning coupled with molecular dynamics [J]. Opt. Laser Technol., 2022, 156: 108442
64 Zhang Z, Yang Z N, Wang C C, et al. Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model [J]. J. Intell. Manuf., 2024, 35: 449
65 Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning [J]. Acta Mater., 2022, 226: 117612
66 Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940 pmid: 36201584
67 Zou C X, Li J S, Wang W Y, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys [J]. Acta Mater., 2021, 202: 211
68 Holm E A, Cohn R, Gao N, et al. Overview: Computer vision and machine learning for microstructural characterization and analysis [J]. Metall. Mater. Trans., 2020, 51A: 5985
69 Müller M, Stiefel M, Bachmann B I, et al. Overview: Machine learning for segmentation and classification of complex steel microstructures [J]. Metals, 2024, 14: 553
70 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [A]. 3rd International Conference on Learning Representations [C]. San Diego, May 7-9, 2015
71 Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [A]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention [C]. Munich: Springer, 2015
72 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition [C]. Las Vegas: IEEE, 2016: 770
73 Shen C G, Wang C C, Huang M H, et al. A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning [J]. J. Mater. Sci. Technol., 2021, 93: 191
doi: 10.1016/j.jmst.2021.04.009
74 Kunselman C, Sheikh S, Mikkelsen M, et al. Microstructure classification in the unsupervised context [J]. Acta Mater., 2022, 223: 117434
75 Ma X D, Zhang Y Q, Wang C C, et al. Alloy microstructure segmentation through SAM and domain knowledge without extra training [J]. Scr. Mater., 2025, 260: 116581
76 Ren D, Wang C C, Wei X L, et al. Building a quantitative composition-microstructure-property relationship of dual-phase steels via multimodal data mining [J]. Acta Mater., 2023, 252: 118954
77 Zhao P L, Wang Y W, Jiang B Y, et al. Neural network modeling of titanium alloy composition-microstructure-property relationships based on multimodal data [J]. Mater. Sci. Eng., 2023, A879: 145202
78 Wang C C, Ren D, Li Y, et al. Prediction of deformation-induced martensite start temperature by convolutional neural network with dual mode features [J]. Materials, 2022, 15: 3495
79 Han S Y, Wang C C, Lai Q Q, et al. Fitting-free mechanical response prediction in dual-phase steels by crystal plasticity theory guided deep learning [J]. Acta Mater., 2025, Available online, 120936
80 Jin L C, Tan F X, Jiang S M. Generative adversarial network technologies and applications in computer vision [J]. Comput. Intel. Neurosci., 2020, 2020: 1459107
81 Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems [C]. Montreal: MIT Press, 2014
82 Qian C, Tan R K, Ye W J. Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method [J]. Acta Mater., 2022, 225: 117548
83 Narikawa R, Fukatsu Y, Wang Z L, et al. Generative adversarial networks-based synthetic microstructures for data-driven materials design [J]. Adv. Theory Simul., 2022, 5: 2100470
84 Long T, Zhang Y X, Fortunato N M, et al. Inverse design of crystal structures for multicomponent systems [J]. Acta Mater., 2022, 231: 117898
85 Yang X. A machine learning-based approach for materials microstructure analysis and prediction [D]. Houston City: Rice University, 2020
86 Cao Z H, Liu Q, Liu Q C, et al. A machine learning method to quantitatively predict alpha phase morphology in additively manufactured Ti-6Al-4V [J]. npj Comput. Mater., 2023, 9: 195
87 Yang Z J, Li X L, Brinson L C, et al. Microstructural materials design via deep adversarial learning methodology [J]. J. Mech. Des., 2018, 140: 111416
88 Kingma D P, Welling M. Auto-encoding variational Bayes [A]. 2nd International Conference on Learning Representations [C]. Banff, April 14-16, 2014
89 Pei Z R, Rozman K A, Doğan Ö N, et al. Machine-learning microstructure for inverse material design [J]. Adv. Sci., 2021, 8: 2101207
90 Ma X D, Zhang Y Q, Wang C C, et al. Creating a microstructure latent space with rich material information for multiphase alloy design [DB/OL]. arXiv: 2409. 02648, 2024
91 Jha D, Choudhary K, Tavazza F, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning [J]. Nat. Commun., 2019, 10: 5316
doi: 10.1038/s41467-019-13297-w pmid: 31757948
92 Yamada H, Liu C, Wu S, et al. Predicting materials properties with little data using shotgun transfer learning [J]. ACS Cent. Sci., 2019, 5: 1717
93 Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
94 Jiang L, Zhang Z H, Hu H, et al. A rapid and effective method for alloy materials design via sample data transfer machine learning [J]. npj Comput. Mater., 2023, 9: 26
95 Wei X L, Zhang C, Han S Y, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. Int. J. Fatigue, 2022, 163: 107050
96 Cuomo S, Di Cola V S, Giampaolo F, et al. Scientific machine learning through physics-informed neural networks: Where we are and what's next [J]. J. Sci. Comput., 2022, 92: 88
97 Liu C, Wu H A. A variational formulation of physics-informed neural network for the applications of homogeneous and heterogeneous material properties identification [J]. Int. J. Appl. Mech., 2023, 15: 23500655
98 Jin H X, Zhang E R, Espinosa H D. Recent advances and applications of machine learning in experimental solid mechanics: A review [J]. Appl. Mech. Rev., 2023, 75: 061001
99 Zhang L J, Li K W, Wang H, et al. MFC-PINN: A method to improve the accuracy and robustness of acoustic emission source planar localization [J]. Measurement, 2024, 235: 114995
100 Liu T Y. AI for Science: Pursuing the brightest side of human intelligence [EB/OL]. (2023-01-05).
刘铁岩. AI for Science: 追求人类智能最光辉的一面[EB/OL]. (2023-01-05).
[1] LI Dianzhong, HU Xiaoqiang, WANG Pei. Metal Chain Creation[J]. 金属学报, 2025, 61(2): 203-210.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[5] XIE Jianxin, SU Yanjing, XUE Dezhen, JIANG Xue, FU Huadong, HUANG Haiyou. Machine Learning for Materials Research and Development[J]. 金属学报, 2021, 57(11): 1343-1361.
[6] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[7] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[8] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[9] Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM[J]. 金属学报, 2016, 52(10): 1267-1278.
[10] Yuefeng GU,Chuanyong CUI,Yong YUAN,Zhihong ZHONG. RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS[J]. 金属学报, 2015, 51(10): 1191-1206.
[11] SHI Zhangzhi ZHANG Wenzheng. DESIGNING Mg-Sn-Mn ALLOY BASED ON CRYSTALLOGRAPHY OF PHASE TRANSFORMATION[J]. 金属学报, 2011, 47(1): 41-46.
[12] CHU Wuyang; WANG Yanbin(Department of Materials Physics; University of Science & Technology Beijing; Beijing 100083) GUAN Yongsheng; YAN Yinglong(Tianjin Steel Pipe Corporation; Tianjin 300301)Correspondent:CHU Wugang;professor; Tel: (010)62332906; Fax: (010)62327283;E-mail:ljqiao@pulic.bta.net.cn. DESIGN OF API C90 TUBULAR STEEL[J]. 金属学报, 1998, 34(10): 1073-1076.
[13] ZHANG Jishan; CUI Hua; HU Zhuangqi (Institute of Metal Rescarch; The Chinese Academy of Sciences;Shenyang); MURATA Y; MORINAGA M; YUKAWA N (Toyohashi University of Technology; Japan). APPLICATIONS OF d-ELECTRONS ALLOY DESIGN THEORY TO DEVELOPMENT OF HOT CORROSION RESISTANT Ni-BASE SINGLE CRYSTAL SUPERALLOYS Ⅲ. Characterization of Properties[J]. 金属学报, 1994, 30(2): 70-78.
[14] ZHANG Jishan;CUI Hua;HU Zhuangqi;MURATA Y;MORINAGA M;YUAA WA N Institute of Metal Research; Academia Sinica; Shenyang Toyohashi University of Technology; Japanassociate professor;Institute of Metal Research;Academia Sinica;Shenyang 110015. APPLICATION OF d-ELECTRON ALLOY DESIGN THEORY TO DEVELOPMENT OF HOT CORROSION RESISTANT Ni-BASE SINGLE CRYSTAL SUPERALLOYS——Ⅰ Characterization of Phase Stability[J]. 金属学报, 1993, 29(7): 5-12.
[15] ZHANG Jishan;CUI Hua;HU Zhuangqi;MURATA Y;MORINAGA M;YUKAWA N Institute of Metal Research; Academia Sinica; Shenyang Toyohashi University of Technology; Japanassociate professor;Institute of Metal Research;Academia Sinica;Shenyang 110015. APPLICATION OF d-ELECTRON ALLOY DESIGN THEORY TO DEVELOPMENT OF HOT CORROSION RESISTANT Ni-BASE SINGLE CRYSTAL SUPERALLOYS——Ⅱ. Effects of Refractory Metals Ti, Ta and Nb on Microstructure and Properties[J]. 金属学报, 1993, 29(7): 13-22.
No Suggested Reading articles found!