|
|
Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design |
WANG Chenchong, XU Wei( ) |
State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China |
|
Cite this article:
WANG Chenchong, XU Wei. Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design. Acta Metall Sin, 2025, 61(4): 541-560.
|
Abstract With the rise of data-driven methods as the fourth scientific paradigm, their impact on the third paradigm—physical model-driven approaches—has been significant in the field of alloy design. However, neither paradigm can overcome the trade-off between model accuracy and interpretability, particularly in mechanical performance design. As a consequence, they fail to meet the efficiency and rationality requirements necessary for alloy development within Material Genome Engineering, especially for metal structural materials. This challenge has led to the emergence of the fifth paradigm, AI4Sci, in alloy design. This article provides an overview of various cases employing the physical metallurgy-guided artificial intelligence method system. It systematically explains how to integrate physical models and mechanisms with artificial intelligence at three levels: numerical data guidance, image data guidance, and mechanism guidance. This approach aims to resolve the inherent trade-off between accuracy and interpretability in alloy design. In addition, it explores the theoretical foundations, advantages, and limitations of three paradigms—multi-scale physical models, artificial intelligence, and AI4Sci—within the field. For cross-scale modeling and materials science large models, this article offers insights into conceptual frameworks and technical methodologies for the future development of each scientific paradigm in alloy design.
|
Received: 22 October 2024
|
|
Fund: National Key Research and Development Program of China(2023YFB3712403);National Natural Science Foundation of China(U22A20106, 52311530082) |
Corresponding Authors:
XU Wei, professor, Tel: (024)83680246, E-mail: xuwei@ral.neu.edu.cn
|
1 |
Liao M Q, Wang Y, Wang Y, et al. Zentropy theory: Bridging materials gene to materials properties [J]. Acta Metall. Sin., 2024, 60: 1379
doi: 10.11900/0412.1961.2024.00147
|
|
廖名情, 王 毅, 王 义 等. 叠熵理论: 从材料基因到材料性能 [J]. 金属学报, 2024, 60: 1379
doi: 10.11900/0412.1961.2024.00147
|
2 |
Xie J X, Su Y J, Xue D Z, et al. Machine learning for materials research and development [J]. Acta Metall. Sin., 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
|
谢建新, 宿彦京, 薛德祯 等. 机器学习在材料研发中的应用 [J]. 金属学报, 2021, 57: 1343
doi: 10.11900/0412.1961.2021.00357
|
3 |
Agrawal A, Choudhary A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science [J]. APL Mater., 2016, 4: 053208
|
4 |
Peng G C Y, Alber M, Tepole A B, et al. Multiscale modeling meets machine learning: What can we learn? [J]. Arch. Comput. Methods Eng., 2021, 28: 1017
|
5 |
Su Y J, Fu H D, Bai Y, et al. Progress in materials genome engineering in China [J]. Acta Metall. Sin., 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
|
宿彦京, 付华栋, 白 洋 等. 中国材料基因工程研究进展 [J]. 金属学报, 2020, 56: 1313
doi: 10.11900/0412.1961.2020.00199
|
6 |
Zhang X, Wang L M, Helwig J, et al. Artificial intelligence for science in quantum, atomistic, and continuum systems [DB/OL]. arXiv: 2307. 08423, 2023
|
7 |
Cui P, Athey S. Stable learning establishes some common ground between causal inference and machine learning [J]. Nat. Mach. Intell., 2022, 4: 110
|
8 |
Zhong X T, Gallagher B, Liu S S, et al. Explainable machine learning in materials science [J]. npj Comput. Mater., 2022, 8: 204
|
9 |
Shen C G, Wang C C, Rivera-Díaz-del-Castillo P E J, et al. Discovery of marageing steels: Machine learning vs. physical metallurgical modelling [J]. J. Mater. Sci. Technol., 2021, 87: 258
|
10 |
Shen C G, Wang C C, Wei X L, et al. Physical metallurgy-guided machine learning and artificial intelligent design of ultrahigh-strength stainless steel [J]. Acta Mater., 2019, 179: 201
|
11 |
Guo A X Y, Cheng L J, Zhan S, et al. Biomedical applications of the powder‐based 3D printed titanium alloys: A review [J]. J. Mater. Sci. Technol., 2022, 125: 252
doi: 10.1016/j.jmst.2021.11.084
|
12 |
Cisternas L A, Lucay F A, Botero Y L. Trends in modeling, design, and optimization of multiphase systems in minerals processing [J]. Minerals, 2020, 10: 22
|
13 |
Huang L, Ruan S, Xing Y C, et al. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods [J]. Med. Image Anal., 2024, 97: 103223
|
14 |
Szymanski N J, Rendy B, Fei Y X, et al. An autonomous laboratory for the accelerated synthesis of novel materials [J]. Nature, 2023, 624: 86
|
15 |
Xue D Z, Balachandran P V, Hogden J, et al. Accelerated search for materials with targeted properties by adaptive design [J]. Nat. Commun., 2016, 7: 11241
doi: 10.1038/ncomms11241
pmid: 27079901
|
16 |
Zhao W C, Zheng C, Xiao B, et al. Composition refinement of 6061 aluminum alloy using active machine learning model based on Bayesian optimization sampling [J]. Acta Metall. Sin., 2021, 57: 797
doi: 10.11900/0412.1961.2020.00298
|
|
赵婉辰, 郑 晨, 肖 斌 等. 基于Bayesian采样主动机器学习模型的6061铝合金成分精细优化 [J]. 金属学报, 2021, 57: 797
doi: 10.11900/0412.1961.2020.00298
|
17 |
Gawlikowski J, Tassi C R N, Ali M, et al. A survey of uncertainty in deep neural networks [J]. Artif. Intell. Rev., 2023, 56(suppl.1) : 1513
|
18 |
Kurz A, Hauser K, Mehrtens H A, et al. Uncertainty estimation in medical image classification: Systematic review [J]. JMIR Med. Inf., 2022, 10: e36427
|
19 |
Jospin L V, Laga H, Boussaid F, et al. Hands-on Bayesian neural networks—A tutorial for deep learning users [J]. IEEE Comput. Intell. Mag., 2022, 17: 29
|
20 |
Venkatraman A, de Oca Zapiain D M, Kalidindi S R. Reduced-order models for ranking damage initiation in dual-phase composites using Bayesian neural networks [J]. JOM, 2020, 72: 4359
doi: 10.1007/s11837-020-04387-y
|
21 |
Wu S W, Zhou X G, Chen Q Y, et al. Development of constitutive models for extrapolative prediction of Nb-Ti micro alloyed steel [J]. Steel Res. Int., 2017, 88: 1700082
|
22 |
Muth A, Venkatraman A, John R, et al. Neighborhood spatial correlations and machine learning classification of fatigue hot-spots in Ti-6Al-4V [J]. Mech. Mater., 2023, 182: 104679
|
23 |
He Z C, Huo S L, Li E, et al. Data-driven approach to characterize and optimize properties of carbon fiber non-woven composite materials [J]. Compos. Struct., 2022, 297: 115961
|
24 |
Norris C, Ayyaswamy A, Vishnugopi B S, et al. Uncertainty quantification and propagation in lithium-ion battery electrodes using Bayesian convolutional neural networks [J]. Energy Storage Mater., 2024, 67: 103251
|
25 |
Ali S, Abuhmed T, El-Sappagh S, et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence [J]. Inf. Fusion, 2023, 99: 101805
|
26 |
Hassija V, Chamola V, Mahapatra A, et al. Interpreting black-box models: A review on explainable artificial intelligence [J]. Cogn. Comput., 2024, 16: 45
|
27 |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [A]. 31st International Conference on Neural Information Processing Systems [C]. Long Beach: Curran Associates Inc., 2017
|
28 |
Xu P C, Ji X B, Li M J, et al. Small data machine learning in materials science [J]. npj Comput. Mater., 2023, 9: 42
|
29 |
Ikram S T, Cherukuri A K. Improving accuracy of intrusion detection model using PCA and optimized SVM [J]. J. Comput. Inf. Technol., 2016, 24: 133
|
30 |
He F, Zhang L Y. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network [J]. J. Process Control, 2018, 66: 51
|
31 |
Xue J L, Chen Y C, Li O, et al. Classification and identification of unknown network protocols based on CNN and T-SNE [J]. J. Phys.: Conf. Ser., 2020, 1617: 012071
|
32 |
Gallos I K, Gkiatis K, Matsopoulos G K, et al. ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia [J]. AIMS Neurosci., 2021, 8: 295
doi: 10.3934/Neuroscience.2021016
pmid: 33709030
|
33 |
Jiang L, Fu H D, Zhang H T, et al. Physical mechanism interpretation of polycrystalline metals' yield strength via a data-driven method: A novel Hall-Petch relationship [J]. Acta Mater., 2022, 231: 117868
|
34 |
Baskes M I. The status role of modeling and simulation in materials science and engineering [J]. Curr. Opin. Solid State Mater. Sci., 1999, 4: 273
|
35 |
Elliott J A. Novel approaches to multiscale modelling in materials science [J]. Int. Mater. Rev., 2011, 56: 207
|
36 |
Chen Z, Haykin S. On different facets of regularization theory [J]. Neural Comput., 2002, 14: 2791
pmid: 12487794
|
37 |
Lu Q, Xu W, van der Zwaag S. The design of a compositionally robust martensitic creep-resistant steel with an optimized combination of precipitation hardening and solid-solution strengthening for high-temperature use [J]. Acta Mater., 2014, 77: 310
|
38 |
Wang C C, Wei X L, Ren D, et al. High-throughput map design of creep life in low-alloy steels by integrating machine learning with a genetic algorithm [J]. Mater. Des., 2022, 213: 110326
|
39 |
Li Y, Martín D S, Wang J L, et al. A review of the thermal stability of metastable austenite in steels: Martensite formation [J]. J. Mater. Sci. Technol., 2021, 91: 200
doi: 10.1016/j.jmst.2021.03.020
|
40 |
Stormvinter A, Borgenstam A, Ågren J. Thermodynamically based prediction of the martensite start temperature for commercial steels [J]. Metall. Mater. Trans., 2012, 43A: 3870
|
41 |
Lee S J, Park K S. Prediction of martensite start temperature in alloy steels with different grain sizes [J]. Metall. Mater. Trans., 2013, 44A: 3423
|
42 |
Rahaman M, Mu W Z, Odqvist J, et al. Machine learning to predict the martensite start temperature in steels [J]. Metall. Mater. Trans., 2019, 50A: 2081
|
43 |
Wang C C, Zhu K Y, Hedström P, et al. A generic and extensible model for the martensite start temperature incorporating thermodynamic data mining and deep learning framework [J]. J. Mater. Sci. Technol., 2022, 128: 31
doi: 10.1016/j.jmst.2022.04.014
|
44 |
Ghosh G, Olson G B. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation [J]. Acta Metall. Mater., 1994, 42: 3361
|
45 |
Lu Q, Liu S L, Li W, et al. Combination of thermodynamic knowledge and multilayer feedforward neural networks for accurate prediction of MS temperature in steels [J]. Mater. Des., 2020, 192: 108696
|
46 |
Kannan R, Nandwana P. Accelerated alloy discovery using synthetic data generation and data mining [J]. Scr. Mater., 2023, 228: 115335
|
47 |
Zhang S J, Yi W, Zhong J, et al. Computer alloy design of Ti modified Al-Si-Mg-Sr casting alloys for achieving simultaneous enhancement in strength and ductility [J]. Materials, 2023, 16: 306
|
48 |
Zou H, Tian Y Y, Zhang L G, et al. Integrating machine learning and CALPHAD method for exploring low-modulus near-β-Ti alloys [J]. Rare Met., 2024, 43: 309
|
49 |
Fu H, Gao T C, Gao J B, et al. Breaking hardness and electrical conductivity trade-off in Cu-Ti alloys through machine learning and Pareto front [J]. Mater. Res. Lett., 2024, 12: 580
|
50 |
Zhang W L, Tang Y, Gao J H, et al. Determination of hardness and Young's modulus in fcc Cu-Ni-Sn-Al alloys via high-throughput experiments, CALPHAD approach and machine learning [J]. J. Mater. Res. Technol., 2024, 30: 5381
|
51 |
Liu X L, Zhang J X, Pei Z R. Machine learning for high-entropy alloys: Progress, challenges and opportunities [J]. Prog. Mater. Sci., 2023, 131: 101018
|
52 |
Xu B, Yin H Q, Jiang X, et al. Data-driven design of Ni-based turbine disc superalloys to improve yield strength [J]. J. Mater. Sci. Technol., 2023, 155: 175
doi: 10.1016/j.jmst.2023.01.032
|
53 |
Lu S, Zou M, Zhang X R, et al. Data-driven “cross-component” design and optimization of γ′-strengthened Co-based superalloys [J]. Adv. Eng. Mater., 2023, 25: 2201257
|
54 |
Trehern W, Ortiz-Ayala R, Atli K C, et al. Data-driven shape memory alloy discovery using Artificial Intelligence Materials Selection (AIMS) framework [J]. Acta Mater., 2022, 228: 117751
|
55 |
Zeng Y Z, Man M R, Bai K W, et al. Explore the full temperature-composition space of 20 quinary CCAs for FCC and BCC single-phases by an iterative machine learning + CALPHAD method [J]. Acta Mater., 2022, 231: 117865
|
56 |
Jin X Z, Luo H, Wang X F, et al. Data mining accelerated the design strategy of high-entropy alloys with the largest hardness based on genetic algorithm optimization [J]. MGE Adv., 2024, 2: e49
|
57 |
Vazquez G, Singh P, Sauceda D, et al. Efficient machine-learning model for fast assessment of elastic properties of high-entropy alloys [J]. Acta Mater., 2022, 232: 117924
|
58 |
Wen C, Wang C X, Zhang Y, et al. Modeling solid solution strengthening in high entropy alloys using machine learning [J]. Acta Mater., 2021, 212: 116917
|
59 |
Li Z, Nash W T, O'Brien S P, et al. cardiGAN: A generative adversarial network model for design and discovery of multi principal element alloys [J]. J. Mater. Sci. Technol., 2022, 125: 81
doi: 10.1016/j.jmst.2022.03.008
|
60 |
Zhang H T, Fu H D, Zhu S C, et al. Machine learning assisted composition effective design for precipitation strengthened copper alloys [J]. Acta Mater., 2021, 215: 117118
|
61 |
He J J, Li J J, Liu C B, et al. Machine learning identified materials descriptors for ferroelectricity [J]. Acta Mater., 2021, 209: 116815
|
62 |
Hartnett T Q, Sharma V, Garg S, et al. Accelerated design of MTX alloys with targeted magnetostructural properties through interpretable machine learning [J]. Acta Mater., 2022, 231: 117891
|
63 |
Wang C C, Zhang Z, Jing X Y, et al. Optimization of multistage femtosecond laser drilling process using machine learning coupled with molecular dynamics [J]. Opt. Laser Technol., 2022, 156: 108442
|
64 |
Zhang Z, Yang Z N, Wang C C, et al. Accelerating ultrashort pulse laser micromachining process comprehensive optimization using a machine learning cycle design strategy integrated with a physical model [J]. J. Intell. Manuf., 2024, 35: 449
|
65 |
Mondal B, Mukherjee T, DebRoy T. Crack free metal printing using physics informed machine learning [J]. Acta Mater., 2022, 226: 117612
|
66 |
Rao Z Y, Tung P Y, Xie R W, et al. Machine learning-enabled high-entropy alloy discovery [J]. Science, 2022, 378: 78
doi: 10.1126/science.abo4940
pmid: 36201584
|
67 |
Zou C X, Li J S, Wang W Y, et al. Integrating data mining and machine learning to discover high-strength ductile titanium alloys [J]. Acta Mater., 2021, 202: 211
|
68 |
Holm E A, Cohn R, Gao N, et al. Overview: Computer vision and machine learning for microstructural characterization and analysis [J]. Metall. Mater. Trans., 2020, 51A: 5985
|
69 |
Müller M, Stiefel M, Bachmann B I, et al. Overview: Machine learning for segmentation and classification of complex steel microstructures [J]. Metals, 2024, 14: 553
|
70 |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [A]. 3rd International Conference on Learning Representations [C]. San Diego, May 7-9, 2015
|
71 |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [A]. 18th International Conference on Medical Image Computing and Computer-Assisted Intervention [C]. Munich: Springer, 2015
|
72 |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [A]. 2016 IEEE Conference on Computer Vision and Pattern Recognition [C]. Las Vegas: IEEE, 2016: 770
|
73 |
Shen C G, Wang C C, Huang M H, et al. A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning [J]. J. Mater. Sci. Technol., 2021, 93: 191
doi: 10.1016/j.jmst.2021.04.009
|
74 |
Kunselman C, Sheikh S, Mikkelsen M, et al. Microstructure classification in the unsupervised context [J]. Acta Mater., 2022, 223: 117434
|
75 |
Ma X D, Zhang Y Q, Wang C C, et al. Alloy microstructure segmentation through SAM and domain knowledge without extra training [J]. Scr. Mater., 2025, 260: 116581
|
76 |
Ren D, Wang C C, Wei X L, et al. Building a quantitative composition-microstructure-property relationship of dual-phase steels via multimodal data mining [J]. Acta Mater., 2023, 252: 118954
|
77 |
Zhao P L, Wang Y W, Jiang B Y, et al. Neural network modeling of titanium alloy composition-microstructure-property relationships based on multimodal data [J]. Mater. Sci. Eng., 2023, A879: 145202
|
78 |
Wang C C, Ren D, Li Y, et al. Prediction of deformation-induced martensite start temperature by convolutional neural network with dual mode features [J]. Materials, 2022, 15: 3495
|
79 |
Han S Y, Wang C C, Lai Q Q, et al. Fitting-free mechanical response prediction in dual-phase steels by crystal plasticity theory guided deep learning [J]. Acta Mater., 2025, Available online, 120936
|
80 |
Jin L C, Tan F X, Jiang S M. Generative adversarial network technologies and applications in computer vision [J]. Comput. Intel. Neurosci., 2020, 2020: 1459107
|
81 |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets [A]. Proceedings of the 28th International Conference on Neural Information Processing Systems [C]. Montreal: MIT Press, 2014
|
82 |
Qian C, Tan R K, Ye W J. Design of architectured composite materials with an efficient, adaptive artificial neural network-based generative design method [J]. Acta Mater., 2022, 225: 117548
|
83 |
Narikawa R, Fukatsu Y, Wang Z L, et al. Generative adversarial networks-based synthetic microstructures for data-driven materials design [J]. Adv. Theory Simul., 2022, 5: 2100470
|
84 |
Long T, Zhang Y X, Fortunato N M, et al. Inverse design of crystal structures for multicomponent systems [J]. Acta Mater., 2022, 231: 117898
|
85 |
Yang X. A machine learning-based approach for materials microstructure analysis and prediction [D]. Houston City: Rice University, 2020
|
86 |
Cao Z H, Liu Q, Liu Q C, et al. A machine learning method to quantitatively predict alpha phase morphology in additively manufactured Ti-6Al-4V [J]. npj Comput. Mater., 2023, 9: 195
|
87 |
Yang Z J, Li X L, Brinson L C, et al. Microstructural materials design via deep adversarial learning methodology [J]. J. Mech. Des., 2018, 140: 111416
|
88 |
Kingma D P, Welling M. Auto-encoding variational Bayes [A]. 2nd International Conference on Learning Representations [C]. Banff, April 14-16, 2014
|
89 |
Pei Z R, Rozman K A, Doğan Ö N, et al. Machine-learning microstructure for inverse material design [J]. Adv. Sci., 2021, 8: 2101207
|
90 |
Ma X D, Zhang Y Q, Wang C C, et al. Creating a microstructure latent space with rich material information for multiphase alloy design [DB/OL]. arXiv: 2409. 02648, 2024
|
91 |
Jha D, Choudhary K, Tavazza F, et al. Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning [J]. Nat. Commun., 2019, 10: 5316
doi: 10.1038/s41467-019-13297-w
pmid: 31757948
|
92 |
Yamada H, Liu C, Wu S, et al. Predicting materials properties with little data using shotgun transfer learning [J]. ACS Cent. Sci., 2019, 5: 1717
|
93 |
Wei X L, van der Zwaag S, Jia Z X, et al. On the use of transfer modeling to design new steels with excellent rotating bending fatigue resistance even in the case of very small calibration datasets [J]. Acta Mater., 2022, 235: 118103
|
94 |
Jiang L, Zhang Z H, Hu H, et al. A rapid and effective method for alloy materials design via sample data transfer machine learning [J]. npj Comput. Mater., 2023, 9: 26
|
95 |
Wei X L, Zhang C, Han S Y, et al. High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. Int. J. Fatigue, 2022, 163: 107050
|
96 |
Cuomo S, Di Cola V S, Giampaolo F, et al. Scientific machine learning through physics-informed neural networks: Where we are and what's next [J]. J. Sci. Comput., 2022, 92: 88
|
97 |
Liu C, Wu H A. A variational formulation of physics-informed neural network for the applications of homogeneous and heterogeneous material properties identification [J]. Int. J. Appl. Mech., 2023, 15: 23500655
|
98 |
Jin H X, Zhang E R, Espinosa H D. Recent advances and applications of machine learning in experimental solid mechanics: A review [J]. Appl. Mech. Rev., 2023, 75: 061001
|
99 |
Zhang L J, Li K W, Wang H, et al. MFC-PINN: A method to improve the accuracy and robustness of acoustic emission source planar localization [J]. Measurement, 2024, 235: 114995
|
100 |
Liu T Y. AI for Science: Pursuing the brightest side of human intelligence [EB/OL]. (2023-01-05).
|
|
刘铁岩. AI for Science: 追求人类智能最光辉的一面[EB/OL]. (2023-01-05).
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|