Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (1): 16-29    DOI: 10.11900/0412.1961.2022.00366
Overview Current Issue | Archive | Adv Search |
Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms
LIU Chang1, WU Ge2(), LU Jian3,4()
1 Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2 Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
3 Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
4 Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
Cite this article: 

LIU Chang, WU Ge, LU Jian. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms. Acta Metall Sin, 2024, 60(1): 16-29.

Download:  HTML  PDF(3868KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Enhancing the strength of metallic materials has long been a primary goal for material scientists due to their significant potential for various industrial applications. However, the methods employed to increase the strength of metals often result in reduced deformation ability, leading to what is commonly termed as the strength-deformability trade-off dilemma. This paper offers a review of the advancements made in nanostructured multi-principal-element alloys (MPEAs) and discusses the challenges associated with simultaneously improving strength and deformability. This review summarizes the various common methods used to fabricate nanostructured MPEAs, including severe plastic deformation, physical vapor deposition, and mechanical alloying. In addition, this paper reviews the strengthening and deformation mechanisms intrinsic to these alloys. Finally, a brief outlook on potential future research directions for nanostructured MPEAs is provided.

Key words:  multi-principal-element alloy      nanostructure      strength      plasticity      severe plastic deformation      physical vapor deposition     
Received:  28 July 2022     
ZTFLH:  TG139  
Fund: Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(HZQB-KCZYB-2020030)
Corresponding Authors:  WU Ge, professor, Tel: 13022875977, E-mail: gewuxjtu@xjtu.edu.cn;
LU Jian, professor, Tel: (+852)34429653, E-mail: jian.lu@cityu.edu.hk

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00366     OR     https://www.ams.org.cn/EN/Y2024/V60/I1/16

Fig.1  Schematics of severe plastic deformation (SPD) approaches for fabricating nanostructured multi-principal-element alloys (ECAP—equal-channel angular pressing, HPT—high pressure torsion, SMAT—surface mechanical attrition treatment, SMGT—surface mechanical grinding treatment)
Fig.2  High-throughput material fabrication method based on magnetron co-sputtering[38]
(a) heat of mixing between the selected elements is shown and their relative size difference is indicated by spheres
(b) isothermal projection of the Ir-Ni-Ta ternary phase diagram
(c) schematic of magnetron co-sputtering
(d) appearance of the combinatorial thin-film materials library deposited on a 100-mm-diameter silicon wafer
Fig.3  Atomic-scale structural and chemical information of the CrFeCoNiPd[13] and VCoNi[8] alloys
(a) HAADF-STEM image of the CrFeCoNiPd alloy (Inset shows the corresponding selected area electron diffraction)[13]
(b) corresponding maps of horizontal normal strain (εxx ), vertical normal strain (εyy ), and shear strain (εxy ) of the CrFeCoNiPd alloy[13]
(c) nano-beam electron diffraction (NBED) pattern of the VCoNi alloy taken at [112] zone axis, the yellow arrows highlight the diffuse reflections at 12{3¯11}[8]
(d) energy-filtered dark field TEM image of the VCoNi alloy taken using the diffuse reflections in Fig.3c (Inset is a magnified TEM image highlighting the coherently diffraction clusters corresponding to chemical short-range orders (CSROs))[8]
(e, f) EDS maps of the VCoNi alloy showing the elemental distributions of the alloy[8]
Fig.4  NiCo nanocrystalline alloy with ultrahigh strength and large ductility[56]
(a) atom probe tomography showing compositional undulation in the NiCo alloy
(b) stacking fault energy (γSFE), unstable stacking fault energy (γUSFE), and their difference as a function of Co content in the Ni-Co alloy
(c) glide distance as a function of time for a <110>/2 dissociated dislocation under a constant shear stress of ~120 MPa in the compositionally undulated NiCo alloy, homogeneous NiCo alloy, and Ni
(d) HRTEM image of representative dissociated dislocations stored in the NiCo alloy after tension (SF—stacking fault)
(e) inverse fast Fourier-filtered image presenting Lomer locks (in red circles)
(f) HRTEM image showing Lomer locks (in red circles) and Lomer-Cottrell (LC) locks in the NiCo alloy after tension (Inset is the HAADF-STEM image showing the atomic structure of a representative Lomer lock. b1- b3 show the Burgers vectors)
Fig.5  Structure, mechanical properties, and composition of the (TiNbZr)86O12C1N1 alloy
(a) HAADF-STEM image showing a bcc structure (Inset shows the corresponding selected area electron diffraction pattern)
(b) compressive engineering stress-strain curves of the alloys (MISS—massive interstitial solid solution)[61]
(c, d) atom probe tomography (APT) results[61]
Fig.6  Twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) behaviors for multi-principal-element alloys
(a) twining was observed in a high-stacking fault energy Fe-26Mn-16Al-5Ni-5C alloy[63] (TB—twin boundary)
(b) schematic of high-order twins[67] (Ⅰ-Ⅶ—the order of nanotwins, θi —the angle of different nanotwins)
(c) a nanostructured (CoCrNi)75Fe21Si2B2 alloy reveals five-order twins, which can serve as effect barriers against dislocation motion[66]
(d) schematics of the deformation mechanism for a TRIP dual-phase Fe50Mn30Co10Cr10 alloy[19]
(e) in situ SEM observations of the TRIP process in a Ta0.5HfZrTi alloy during continuous loading[20] (σ—tensile stress)
Fig.7  TEM images of the CoCrNi (a), (CoCrNi)88Fe10Si1B1 (b), and (CoCrNi)75Fe21Si2B2 (c) alloys[66] showing that the structure changes from nanocrystalline to crystal-glass dual-phase with increasing Si and B contents in the CoCrNi-Fe-Si-B alloys, and plane-view ABF-STEM image shows ≈ 1 nm-thick amorphous phase (brighter regions) appearing at triple points and along some grain boundaries (d)
1 Campbell F C. Elements of Metallurgy and Engineering Alloys [M]. Materials Park: ASM International, 2008: 41
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
3 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/adem.v6:5
4 Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
doi: 10.1016/j.mattod.2015.11.026
5 Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase [J]. Intermetallics, 2013, 41: 96
doi: 10.1016/j.intermet.2013.05.002
6 Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys [J]. Nat. Commun., 2016, 7: 13564
doi: 10.1038/ncomms13564 pmid: 27976669
7 Senkov O N, Gorsse S, Miracle D B. High temperature strength of refractory complex concentrated alloys [J]. Acta Mater., 2019, 175: 394
doi: 10.1016/j.actamat.2019.06.032
8 Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
doi: 10.1038/s41586-021-03428-z
9 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
10 Gerard A Y, Han J, McDonnell S J, et al. Aqueous passivation of multi-principal element alloy Ni38Fe20Cr22Mn10Co10: Unexpected high Cr enrichment within the passive film [J]. Acta Mater., 2020, 198: 121
doi: 10.1016/j.actamat.2020.07.024
11 Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
12 Lee C, Chou Y, Kim G, et al. Lattice-distortion-enhanced yield strength in a refractory high-entropy alloy [J]. Adv. Mater., 2020, 32: 2004029
doi: 10.1002/adma.v32.49
13 Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
doi: 10.1038/s41586-019-1617-1
14 Bu Y Q, Wu Y, Lei Z F, et al. Local chemical fluctuation mediated ductility in body-centered-cubic high-entropy alloys [J]. Mater. Today, 2021, 46: 28
doi: 10.1016/j.mattod.2021.02.022
15 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
16 Wang F L, Balbus G H, Xu S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370: 95
doi: 10.1126/science.aba3722 pmid: 33004516
17 Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys [J]. Science, 2018, 362: 933
doi: 10.1126/science.aas8815 pmid: 30467166
18 Liang Y J, Wang L J, Wen Y R, et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys [J]. Nat. Commun., 2018, 9: 4063
doi: 10.1038/s41467-018-06600-8
19 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
20 Huang H L, Wu Y, He J Y, et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering [J]. Adv. Mater., 2017, 29: 1701678
doi: 10.1002/adma.v29.30
21 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
22 Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986 pmid: 34413235
23 Ma E, Zhu T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals [J]. Mater. Today, 2017, 20: 323
doi: 10.1016/j.mattod.2017.02.003
24 Zhu K Y, Vassel A, Brisset F, et al. Nanostructure formation mechanism of α-titanium using SMAT [J]. Acta Mater., 2004, 52: 4101
doi: 10.1016/j.actamat.2004.05.023
25 Shahmir H, Mousavi T, He J Y, et al. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing [J]. Mater. Sci. Eng., 2017, A705: 411
26 Picak S, Yilmaz H C, Karaman I. Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures [J]. Scr. Mater., 2021, 202: 113995
doi: 10.1016/j.scriptamat.2021.113995
27 Pan Q S, Zhang L X, Feng R, et al. Gradient cell-structured high-entropy alloy with exceptional strength and ductility [J]. Science, 2021, 374: 984
doi: 10.1126/science.abj8114
28 Čížek J, Haušild P, Cieslar M, et al. Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation [J]. J. Alloys Compd., 2018, 768: 924
doi: 10.1016/j.jallcom.2018.07.319
29 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
30 Nguyen N T C, Asghari-Rad P, Sathiyamoorthi P, et al. Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy [J]. Nat. Commun., 2020, 11: 2736
doi: 10.1038/s41467-020-16601-1
31 Fang T H, Li W L, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science, 2011, 331: 1587
doi: 10.1126/science.1200177 pmid: 21330487
32 Liu C, Liu Y, Wang Q, et al. Nano-dual-phase metallic glass film enhances strength and ductility of a gradient nanograined magnesium alloy [J]. Adv. Sci., 2020, 7: 2001480
doi: 10.1002/advs.v7.19
33 Qin S, Yang M X, Jiang P, et al. Designing structures with combined gradients of grain size and precipitation in high entropy alloys for simultaneous improvement of strength and ductility [J]. Acta Mater., 2022, 230: 117847
doi: 10.1016/j.actamat.2022.117847
34 Guo W, Pei Z R, Sang X H, et al. Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability [J]. Acta Mater., 2019, 170: 176
doi: 10.1016/j.actamat.2019.03.024
35 Sharma A. High entropy alloy coatings and technology [J]. Coatings, 2021, 11: 372
doi: 10.3390/coatings11040372
36 Ketov S V, Shi X T, Xie G Q, et al. Nanostructured Zr-Pd metallic glass thin film for biochemical applications [J]. Sci. Rep., 2015, 5: 7799
doi: 10.1038/srep07799 pmid: 25589472
37 Li M X, Sun Y T, Wang C, et al. Data-driven discovery of a universal indicator for metallic glass forming ability [J]. Nat. Mater., 2022, 21: 165
doi: 10.1038/s41563-021-01129-6
38 Li M X, Zhao S F, Lu Z, et al. High-temperature bulk metallic glasses developed by combinatorial methods [J]. Nature, 2019, 569: 99
doi: 10.1038/s41586-019-1145-z
39 Yan X H, Zhang Y. High-entropy films and compositional gradient materials [J]. Surf. Technol., 2019, 48(6): 98
闫薛卉, 张 勇. 高熵薄膜和成分梯度材料 [J]. 表面技术, 2019, 48(6): 98
40 Zou Y, Ma H, Spolenak R. Ultrastrong ductile and stable high-entropy alloys at small scales [J]. Nat. Commun., 2015, 6: 7748
doi: 10.1038/ncomms8748 pmid: 26159936
41 Zou Y, Wheeler J M, Ma H, et al. Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability [J]. Nano Lett., 2017, 17: 1569
doi: 10.1021/acs.nanolett.6b04716 pmid: 28125236
42 Zhang Z J, Sheng H W, Wang Z J, et al. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy [J]. Nat. Commun., 2017, 8: 14390
doi: 10.1038/ncomms14390 pmid: 28218267
43 Chen Y J, Chen D K, An X H, et al. Unraveling dual phase transformations in a CrCoNi medium-entropy alloy [J]. Acta Mater., 2021, 215: 117112
doi: 10.1016/j.actamat.2021.117112
44 Salemi F, Abbasi M H, Karimzadeh F. Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying [J]. J. Alloys Compd., 2016, 685: 278
doi: 10.1016/j.jallcom.2016.05.274
45 Vaidya M, Muralikrishna G M, Murty B S. High-entropy alloys by mechanical alloying: A review [J]. J. Mater. Res., 2019, 34: 664
doi: 10.1557/jmr.2019.37
46 Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
doi: 10.1016/j.jallcom.2007.05.104
47 Fu Z Q, Chen W P, Xiao H Q, et al. Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique [J]. Mater. Des., 2013, 44: 535
doi: 10.1016/j.matdes.2012.08.048
48 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc., 1951, 64B: 747
49 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst., 1953, 174: 25
50 Liu W H, Wu Y, He J Y, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy [J]. Scr. Mater., 2013, 68: 526
doi: 10.1016/j.scriptamat.2012.12.002
51 Schiøtz J, Di Tolla F D, Jacobsen K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391: 561
doi: 10.1038/35328
52 Hu J, Shi Y N, Sauvage X, et al. Grain boundary stability governs hardening and softening in extremely fine nanograined metals [J]. Science, 2017, 355: 1292
doi: 10.1126/science.aal5166 pmid: 28336664
53 Xin S W, Shen X, Du C C, et al. Bulk nanocrystalline boron-doped VNbMoTaW high entropy alloys with ultrahigh strength, hardness, and resistivity [J]. J. Alloys Compd., 2021, 853: 155995
doi: 10.1016/j.jallcom.2020.155995
54 Wu G, Liu C, Brognara A, et al. Symbiotic crystal-glass alloys via dynamic chemical partitioning [J]. Mater. Today, 2021, 51: 6
doi: 10.1016/j.mattod.2021.10.025
55 Zhu Y T, Wu X L. Ductility and plasticity of nanostructured metals: Differences and issues [J]. Mater. Today Nano, 2018, 2: 15
56 Li H, Zhang H X, Li S Z, et al. Uniting tensile ductility with ultrahigh strength via composition undulation [J]. Nature, 2022, 604: 273
doi: 10.1038/s41586-022-04459-w
57 Gottstein G. Physical Foundations of Materials Science [M]. Berlin: Springer, 2004: 26
58 Li Z M. Interstitial equiatomic CoCrFeMnNi high-entropy alloys: Carbon content, microstructure, and compositional homogeneity effects on deformation behavior [J]. Acta Mater., 2019, 164: 400
doi: 10.1016/j.actamat.2018.10.050
59 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
60 Wang Z W, Baker I, Cai Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Mater., 2016, 120: 228
doi: 10.1016/j.actamat.2016.08.072
61 Liu C, Liu W J, Xia W Z, et al. Massive interstitial solid solution alloys achieve near-theoretical strength [J]. Nat. Commun., 2022, 13: 1102
doi: 10.1038/s41467-022-28706-w pmid: 35232964
62 Schuh B, Völker B, Todt J, et al. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties [J]. Acta Mater., 2018, 142: 201
doi: 10.1016/j.actamat.2017.09.035
63 Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2 pmid: 35739123
64 Kou H N, Lu J, Li Y. High-strength and high-ductility nanostructured and amorphous metallic materials [J]. Adv. Mater., 2014, 26: 5518
doi: 10.1002/adma.v26.31
65 Liu X W, Sun L G, Zhu L L, et al. High-order hierarchical nanotwins with superior strength and ductility [J]. Acta Mater., 2018, 149: 397
doi: 10.1016/j.actamat.2018.01.047
66 Wu G, Balachandran S, Gault B, et al. Crystal-glass high-entropy nanocomposites with near theoretical compressive strength and large deformability [J]. Adv. Mater., 2020, 32: 2002619
doi: 10.1002/adma.v32.34
67 Sun L G, Wu G, Wang Q, et al. Nanostructural metallic materials: Structures and mechanical properties [J]. Mater. Today, 2020, 38: 114
doi: 10.1016/j.mattod.2020.04.005
68 Tian L, Cheng Y Q, Shan Z W, et al. Approaching the ideal elastic limit of metallic glasses [J]. Nat. Commun., 2012, 3: 609
doi: 10.1038/ncomms1619 pmid: 22215084
69 Guo H, Yan P F, Wang Y B, et al. Tensile ductility and necking of metallic glass [J]. Nat. Mater., 2007, 6: 735
pmid: 17704779
70 Jang D, Greer J R. Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses [J]. Nat. Mater., 2010, 9: 215
doi: 10.1038/nmat2622 pmid: 20139966
71 Wu G, Chan K C, Zhu L L, et al. Dual-phase nanostructuring as a route to high-strength magnesium alloys [J]. Nature, 2017, 545: 80
doi: 10.1038/nature21691
72 Takeuchi A, Inoue A. Calculations of amorphous-forming composition range for ternary alloy systems and analyses of stabilization of amorphous phase and amorphous-forming ability [J]. Mater. Trans., 2001, 42: 1435
doi: 10.2320/matertrans.42.1435
73 Zhao S T, Li Z Z, Zhu C Y, et al. Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy [J]. Sci. Adv., 2021, 7: eabb3108
doi: 10.1126/sciadv.abb3108
74 Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
doi: 10.1038/s41467-019-13087-4 pmid: 31704930
75 Liu C, Li Z M, Lu W J, et al. Reactive wear protection through strong and deformable oxide nanocomposite surfaces [J]. Nat. Commun., 2021, 12: 5518
doi: 10.1038/s41467-021-25778-y pmid: 34535645
76 Chen M W, Ma E, Hemker K J, et al. Deformation twinning in nanocrystalline aluminum [J]. Science, 2003, 300: 1275
pmid: 12714676
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[7] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[8] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[9] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!