Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1201-1208    DOI: 10.11900/0412.1961.2023.00196
Research paper Current Issue | Archive | Adv Search |
Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy
LI Jiarong(), DONG Jianmin, HAN Mei, LIU Shizhong
Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy. Acta Metall Sin, 2023, 59(9): 1201-1208.

Download:  HTML  PDF(3115KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

DD6 is a second generation single crystal superalloy independently developed in China, which offers advantages such as high-temperature strength, stable structure, and satisfactory casting process performance. Currently, it is being widely used in development of aviation engine turbine blades. Sand blasting can be performed for surface cleaning and adjusting surface roughness of single crystal turbine blades and is an essential process in manufacturing of single crystal blades. Although sand blasting has been widely used in the manufacturing process of DD6 alloy turbine blades, only few reports studied the impact of sand blasting on the surface integrity and fatigue performance of DD6 alloy. Therefore, research is required to provide a theoretical basis for the safe service of DD6 alloy turbine blades. In this work, several specimens after a standard heat treatment are blasted with white corundum sand with 150, 124, and 100 μm diameters at 0.5 MPa to study the effect of sand blasting on the surface integrity of DD6 alloy; the rotary bending high cycle fatigue properties of the specimens without and with sand blasting (blasting with white corundum sand with 150 μm diameter) were tested at 760 and 980oC, respectively, to study the effect of sand blasting on the alloy's fatigue property. The results show that sand blasting destroys the surface integrity of the single crystal superalloy, resulting in irregular pits on the surface caused by the cutting by sand particles while changing the surface morphology as well; the surface roughness and microhardness increase with sand particle size increase; after sand blasting, many dislocations slip in the γ phase, and the dislocation density near the surface is high. Additionally, many dislocations shear the γ′ phase, forming antiphase domain boundaries and stacking faults; sand blasting results in deformation strengthening and residual stress; blasting with 150 μm diameter sand at 0.5 MPa has a small effect on the rotary bending high cycle fatigue properties of DD6 alloy at 760oC, but it considerably reduces the alloy's fatigue properties at 980oC in the low stress amplitude region, decreasing the fatigue strength of the alloy by 7.3%. The combined action of the notch effect, oxidation damage, deformation strengthening, and residual compressive stress leads to the changes in fatigue life without and with sand blasting.

Key words:  single crystal superalloy      DD6      surface integrity      high cycle fatigue      sand blasting     
Received:  04 May 2023     
ZTFLH:  TG132.3  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00196     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1201

Fig.1  Schematic of shape and size of specimen for high cycle fatigue test (unit: mm)
Fig.2  3D (a, c, e) and 2D (b, d, f) morphologies of DD6 superalloy specimens after sand blasting with granularities of 150 μm (a, b), 124 μm (c, d), and 100 μm (e, f)
Fig.3  Variations of specimen hardness with distance from surface after sand blasting with different granularities
Fig.4  Dislocation morphologies of DD6 superalloy specimen after sand blasting with 150 μm and 0.5 MPa sand (APB—antiphase domain boundary)
(a) near surface (b) slightly away from surface
Fig.5  Stress-fatigue life curves of DD6 superalloy specimens at 760oC (a) and 980oC (b) before and after sand blasting with 150 μm granularity (S—stress, Nf—fatigue life)
Fig.6  High cycle fatigue fracture (a-d) and source zone (e-h) morphologies of DD6 superalloy specimens before (a, e, c, g) and after (b, f, d, h) sand blasting with 150 μm granularity under rotational bending at 760oC (a, e, b, f) and 980oC (c, g, d, h) (a, e) S = 460 MPa, Nf = 1.10 × 106 cyc (b, f) S = 500 MPa, Nf = 1.97 × 105 cyc (c, g) S = 440 MPa, Nf = 7.46 × 106 cyc (d, h) S = 500 MPa, Nf = 1.44 × 105 cyc
Fig.7  Cross sectional microstructures of DD6 superalloy specimens after sand blasting with 150 μm granularity under rotational bending at 760oC (a) and 980oC (b)
Fig.8  Dislocation morphologies near high cycle fatigue fracture of DD6 superalloy specimens under rotational bending at different temperatures after sand blasting with 150 μm granularity
(a) 760oC, S = 430 MPa, Nf = 7.54 × 106 cyc (b) 760oC, S = 600 MPa, Nf = 8.07 × 104 cyc
(c) 980oC, S = 370 MPa, Nf = 8.71 × 106 cyc (d) 980oC, S = 700 MPa, Nf = 2.78 × 104 cyc
1 Han L, Huang D W, Yan X J, et al. Combined high and low cycle fatigue life prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade [J]. Int. J. Fatigue, 2019, 127: 120
doi: 10.1016/j.ijfatigue.2019.05.022
2 Wang R, Zhang B, Hu D, et al. Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade [J]. Eng. Fail. Anal., 2019, 102: 35
doi: 10.1016/j.engfailanal.2019.04.023
3 Li J R, Xie H J, Han M, et al. High cycle fatigue behavior of second generation single crystal superalloy [J]. Acta Metall. Sin., 2019, 55: 1195
李嘉荣, 谢洪吉, 韩 梅 等. 第二代单晶高温合金高周疲劳行为研究 [J]. 金属学报, 2019, 55: 1195
4 Field M, Kahles J F. The surface integrity of machined-and-ground high strength steels [J]. DIMC Report, 1964, 210: 54
5 Zhao Z Y. Application of high strength alloy and technonolgy of anti-fatigue manufacturing [J]. Aeronaut. Manuf. Technol., 2007, (10): 30
赵振业. 高强度合金应用与抗疲劳制造技术 [J]. 航空制造技术, 2007, (10): 30
6 Wang R Z. Surface integrity and fracture resistance of engineering metallic materials and components [J]. China Surf. Eng., 2011, 24(5): 55
王仁智. 工程金属材料/零件的表面完整性及其断裂抗力 [J]. 中国表面工程, 2011, 24(5): 55
7 He B L, Deng H P. Research status and development trend of surface integrity [J]. Surf. Technol., 2015, 44(9): 140
何柏林, 邓海鹏. 表面完整性研究现状及发展趋势 [J]. 表面技术, 2015, 44(9): 140
8 Cheng Y M, Liu J, Fu Z H, et al. Effect of surface treatment on mechanical properties of 7B05 aluminum alloy MIG butt welded joints [J]. Hot Work. Technol., 2016, 45(9): 63
程永明, 刘 建, 付正鸿 等. 表面处理对7系铝合金MIG焊对接接头力学性能的影响 [J]. 热加工工艺, 2016, 45(9): 63
9 Ye Y, Zou G, Long W, et al. TLP repaired IN738LC superalloy with uneven surface defect gap width after post heat treatment: Microstructure and mechanical properties [J]. J. Alloys Compd., 2018, 748: 26
doi: 10.1016/j.jallcom.2018.02.343
10 Gao Y K, Yin Y F, Li X B, et al. Research on residual stress field of GH909 alloy by shot peening [J]. J. Mater. Eng., 2002, (4): 40
高玉魁, 殷源发, 李向斌 等. GH909合金喷丸强化残余应力场的研究 [J]. 材料工程, 2002, (4): 40
11 Zhong L Q, Liang Y L, Yan Z, et al. Effect of shot peening on high cycle fatigue limit of FGH4097 P/M superalloys at room temperature [J]. Rare Met. Mater. Eng., 2018, 47: 2198
钟丽琼, 梁益龙, 严 振 等. 喷丸强化对FGH4097粉末高温合金室温高周疲劳极限的影响 [J]. 稀有金属材料与工程, 2018, 47: 2198
12 Li J R, Zhong Z G, Tang D Z, et al. A low-cost second generation single crystal superalloy DD6 [A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 777
13 Li J R, Zhao J Q, Liu S Z, et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6 [A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443
14 Gao Y K. Influence of shot peening on high temperature rotating bending fatigue property of DD6 single crystal superalloy [J]. Heat Treat. Met., 2009, 34(8): 60
高玉魁. 喷丸强化对DD6单晶高温合金高温旋转弯曲疲劳性能的影响 [J]. 金属热处理, 2009, 34(8): 60
15 Wang X, You H D, Li J R, et al. Influence of ceramic-shot-peening on surface integrity of DD6 single crystal superalloy [J]. J. Mater. Eng., 2014, (4): 53
王 欣, 尤宏德, 李嘉荣 等. 陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响 [J]. 材料工程, 2014, (4): 53
16 Xiong J C, Li J R, Sun F L, et al. Microstructure of recrystallization and their effects on stress rupture property of single crystal superalloy DD6 [J]. Acta Metall. Sin., 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
熊继春, 李嘉荣, 孙凤礼 等. 单晶高温合金DD6再结晶组织及其对持久性能的影响 [J]. 金属学报, 2014, 50: 737
doi: 10.3724/SP.J.1037.2013.00561
17 Mellali M, Grimaud A, Leger A C, et al. Alumina grit blasting parameters for surface preparation in the plasma spraying operation [J]. J. Therm. Spray Technol., 1997, 6: 217
doi: 10.1007/s11666-997-0016-6
18 Xie H J, Li J R, Han M, et al. Effect of over-temperature on microstructure and high cycle fatigue properties of DD6 single crystal superalloy [J]. Rare Met. Mater. Eng., 2018, 47: 2483
谢洪吉, 李嘉荣, 韩 梅 等. 超温对DD6单晶高温合金组织及高周疲劳性能影响 [J]. 稀有金属材料与工程, 2018, 47: 2483
19 Han M, Xie H J, Li J R, et al. Effect of recrystallization on axial high cycle fatigue properties of DD6 single crystal superalloy [J]. J. Mater. Eng., 2019, 47(6): 161
韩 梅, 谢洪吉, 李嘉荣 等. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响 [J]. 材料工程, 2019, 47(6): 161
20 Lukáš P, Kunz L, Svoboda M. High-temperature ultra-high cycle fatigue damage of notched single crystal superalloys at high mean stresses [J]. Int. J. Fatigue, 2005, 27: 1535
doi: 10.1016/j.ijfatigue.2005.06.006
21 Liu Y, Yu J J, Xu Y, et al. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures [J]. Mater. Sci. Eng., 2007, A454-455: 357
22 Lamm M, Singer R F. The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483 [J]. Metall. Mater. Trans., 2007, 38A: 1177
23 Zhu X, Shyam A, Jones J W, et al. Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles [J]. Int. J. Fatigue, 2006, 28: 1566
doi: 10.1016/j.ijfatigue.2005.04.016
24 Huang M. Creep strengthening mechanisms in Re-doping nickel-based single crystal superalloy and defect structure in single crystal blades [D]. Beijing: Tsinghua University, 2015
黄 鸣. 含Re镍基单晶高温合金强化机理及单晶叶片的缺陷研究 [D]. 北京: 清华大学, 2015
25 Rae C M F, Zhang L. Primary creep in single crystal superalloys: Some comments on effects of composition and microstructure [J]. Mater. Sci. Technol., 2009, 25: 228
doi: 10.1179/174328408X369311
26 Yang Z X, Liu M, Deng C M, et al. Review on the pretreatment of substrate for thermal spray process [J]. China Surf. Eng., 2012, 25(2): 8
杨震晓, 刘 敏, 邓春明 等. 热喷涂基体表面前处理技术的研究进展 [J]. 中国表面工程, 2012, 25(2): 8
27 Sasahara H. The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel [J]. Int. J. Mach. Tools Manuf., 2005, 45: 131
doi: 10.1016/j.ijmachtools.2004.08.002
28 Ghanem F, Sidhom H, Braham C, et al. Effect of near-surface residual stress and microstructure modification from machining on the fatigue endurance of a tool steel [J]. J. Mater. Eng. Perform., 2002, 11: 631
doi: 10.1361/105994902770343629
29 Zhang M, Wang W Q, Wang P F, et al. The fatigue behavior and mechanism of FV520B-I with large surface roughness in a very high cycle regime [J]. Eng. Fail. Anal., 2016, 66: 432
doi: 10.1016/j.engfailanal.2016.04.029
30 Ryu H R, Kim W S, Ha W II, et al. Effect of toe grinding on fatigue strength of ship structure [J]. J. Ship Prod., 2008, 24: 152
31 Remes H, Korhonen E, Lehto P, et al. Influence of surface integrity on the fatigue strength of high-strength steels [J]. J. Constr. Steel Res., 2013, 89: 21
doi: 10.1016/j.jcsr.2013.06.003
32 Ren J X, Hua D A. Grinding Principle [M]. Beijing: Publishing House of Electronics Industry, 2011: 242
任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011: 242
33 Xu R F, Zhou Y X, Yang S L, et al. Research status of influence mechanism of surface integrity on fatigue behavior of workpieces [J]. Aeronaut. Manuf. Technol., 2019, 62(14): 96
徐汝锋, 周永鑫, 杨慎亮 等. 机械加工表面完整性影响试件疲劳性能的研究现状 [J]. 航空制造技术, 2019, 62(14): 96
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[5] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[6] LI Wenwen, CHEN Bo, XIONG Huaping, SHANG Yonglai, MAO Wei, CHENG Yaoyong. Microstructure and Mechanical Property of the Second- Generation Single-Crystal Superalloy DD6 Joint[J]. 金属学报, 2021, 57(8): 959-966.
[7] MA Dexin, ZHAO Yunxing, XU Weitai, PI Libo, LI Zhongxing. Surface Effect on Eutectic Structure Distribution in Single Crystal Superalloy Castings[J]. 金属学报, 2021, 57(12): 1539-1548.
[8] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[9] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[10] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[11] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[12] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[13] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[14] LI Jiarong,XIE Hongji,HAN Mei,LIU Shizhong. High Cycle Fatigue Behavior of Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1195-1203.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!