|
|
|
| Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys |
CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun( ) |
| State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys. Acta Metall Sin, 2023, 59(9): 1209-1220.
|
|
|
Abstract γ' precipitate strengthened cobalt-based alloys exhibit superior comprehensive properties and are potential candidates for the anticipated next-generation superalloy. The phase field method, which considers the combined effect of multiple energy fields, effectively elucidates the processing and mechanism of microstructure evolution. By using the ternary elastoplastic phase field model coupled with CALPHAD and crystal plasticity model, the γ' evolution of Co-9Al-xW (x = 8, 9, and 10; atomic fraction, %) alloys during creep processes is simulated herein. The corresponding rafting behaviors and creep properties are evaluated from the perspective of the changes in second-order moment invariant map (SOMIM) and stress/strain fields. The results show that as the W content increases, the volume fraction of the γ' phase increases, the plastic strain in the γ matrix reduces, and rafting occurs with accelerated rate, which enhances the creep property. Further, the SOMIM analysis shows that the raft structure leads to a steady creep behavior in 9W and 10W alloys. In addition, the alloy with a high W content has a high misfit stress in the γ matrix, which leads to a low plastic strain.
|
|
Received: 23 March 2023
|
|
|
| Fund: National Natural Science Foundation of China(51971174);National Natural Science Foundation of China(52031012);National Science and Technology Major Project(J2019-VI-0020-0135);National Key Research and Development Program of China(2017YFB0702902);Research Fund of the State Key Laboratory of Solidification Processing (NPU), China(2022-TZ-01) |
| 1 |
Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
|
| 2 |
Titus M S, Suzuki A, Pollock T M. High Temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
|
| 3 |
Bauer A, Neumeier S, Pyczak F, et al. Creep properties of different γ'-strengthened Co-base superalloys [J]. Mater. Sci. Eng., 2012, A550: 333
|
| 4 |
Xue F, Zenk C H, Freund L P, et al. Double minimum creep in the rafting regime of a single-crystal Co-base superalloy [J]. Scr. Mater., 2018, 142: 129
doi: 10.1016/j.scriptamat.2017.08.039
|
| 5 |
Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Metall. Mater. Trans., 2018, 49A: 4079
|
| 6 |
Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
|
| 7 |
Titus M S, Suzuki A, Pollock T M. Creep and directional coarsening in single crystals of new γ-γ' cobalt-base alloys [J]. Scr. Mater., 2012, 66: 574
doi: 10.1016/j.scriptamat.2012.01.008
|
| 8 |
Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
|
| 9 |
Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
|
| 10 |
Bocchini P J, Sudbrack C K, Sauza D J, et al. Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0,2,4,6)W-6Ti(at%) cobalt-based superalloys [J]. Mater. Sci. Eng., 2017, A700: 481
|
| 11 |
Tourret D, Liu H, Llorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges [J]. Prog. Mater. Sci., 2022, 123: 100810
doi: 10.1016/j.pmatsci.2021.100810
|
| 12 |
Gaubert A, Le Bouar Y, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys [J]. Philos. Mag., 2010, 90: 375
doi: 10.1080/14786430902877802
|
| 13 |
Cottura M, Le Bouar Y, Finel A, et al. A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys [J]. J. Mech. Phys. Solids, 2012, 60: 1243
doi: 10.1016/j.jmps.2012.04.003
|
| 14 |
Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063
|
| 15 |
Wang D, Li Y S, Shi S J, et al. Phase-field simulation of γ' precipitates rafting and creep property of Co-base superalloys [J]. Mater. Des., 2020, 196: 109077
doi: 10.1016/j.matdes.2020.109077
|
| 16 |
Yang M, Zhang J, Wei H, et al. Study of γ′ rafting under different stress states—A phase-field simulation considering viscoplasticity [J]. J. Alloys Compd., 2018, 769: 453
doi: 10.1016/j.jallcom.2018.07.317
|
| 17 |
Ali M A, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study [J]. Int. J. Plast., 2020, 128: 102659
doi: 10.1016/j.ijplas.2020.102659
|
| 18 |
Zhou N, Shen C, Mills M, et al. Large-scale three-dimensional phase field simulation of γ'-rafting and creep deformation [J]. Philos. Mag., 2010, 90: 405
doi: 10.1080/14786430903081990
|
| 19 |
Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys [J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
|
| 20 |
Yang M, Zhang J, Wei H, et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
doi: 10.1016/j.scriptamat.2017.12.008
|
| 21 |
Yang M, Zhang J, Gui W M, et al. Coupling phase field with creep damage to study γ' evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71: 129
doi: 10.1016/j.jmst.2020.07.036
|
| 22 |
Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
|
| 23 |
Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
|
| 24 |
Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
|
| 25 |
Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
|
| 26 |
Wang P S, Xiong W, Kattner U R, et al. Thermodynamic re-assessment of the Al-Co-W system [J]. Calphad, 2017, 59: 112
doi: 10.1016/j.calphad.2017.09.007
|
| 27 |
Zhao Y H. Co-precipitated Ni/Mn shell coated nano Cu-rich core structure: A phase-field study [J]. J. Mater. Res. Technol., 2022, 21: 546
doi: 10.1016/j.jmrt.2022.09.032
|
| 28 |
Dinsdale A T. SGTE data for pure elements [J]. Calphad, 1991, 15: 317
doi: 10.1016/0364-5916(91)90030-N
|
| 29 |
Zhou N, Lv D C, Zhang H L, et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270
doi: 10.1016/j.actamat.2013.10.069
|
| 30 |
Khachaturyan A G, Semenovskaya S, Tsakalakos T. Elastic strain energy of inhomogeneous solids [J]. Phys. Rev., 1995, 52B: 15909
|
| 31 |
Li D Y, Chen L Q. Shape evolution and splitting of coherent particles under applied stresses [J]. Acta Mater., 1998, 47: 247
doi: 10.1016/S1359-6454(98)00323-1
|
| 32 |
Moon K W, Campbell C E, Williams M E, et al. Diffusion in FCC Co-rich Co-Al-W alloys at 900 and 1000oC [J]. J. Phase Equilib. Diffus., 2016, 37: 402
doi: 10.1007/s11669-016-0486-7
|
| 33 |
Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys [J]. Acta Mater., 2010, 58: 875
doi: 10.1016/j.actamat.2009.10.002
|
| 34 |
Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
|
| 35 |
Vladimirov I N, Reese S, Eggeler G. Constitutive modelling of the anisotropic creep behaviour of nickel-base single crystal superalloys [J]. Int. J. Mech. Sci., 2009, 51: 305
doi: 10.1016/j.ijmecsci.2009.02.004
|
| 36 |
Méric L, Poubanne P, Cailletaud G. Single crystal modeling for structural calculations: part 1—Model presentation [J]. J. Eng. Mater. Technol., 1991, 113: 162
doi: 10.1115/1.2903374
|
| 37 |
Cormier J, Cailletaud G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations [J]. Mater. Sci. Eng., 2010, A527: 6300
|
| 38 |
Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
|
| 39 |
Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals [J]. Acta Metall., 1985, 33: 1601
doi: 10.1016/0001-6160(85)90154-3
|
| 40 |
Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
|
| 41 |
Méric L, Cailletaud G. Single crystal modeling for structural calculations: Part 2—Finite element implementation [J]. J. Eng. Mater. Technol., 1991, 113: 171
doi: 10.1115/1.2903375
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|