Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (9): 1209-1220    DOI: 10.11900/0412.1961.2023.00118
Research paper Current Issue | Archive | Adv Search |
Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys
CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun()
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys. Acta Metall Sin, 2023, 59(9): 1209-1220.

Download:  HTML  PDF(4005KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

γ' precipitate strengthened cobalt-based alloys exhibit superior comprehensive properties and are potential candidates for the anticipated next-generation superalloy. The phase field method, which considers the combined effect of multiple energy fields, effectively elucidates the processing and mechanism of microstructure evolution. By using the ternary elastoplastic phase field model coupled with CALPHAD and crystal plasticity model, the γ' evolution of Co-9Al-xW (x = 8, 9, and 10; atomic fraction, %) alloys during creep processes is simulated herein. The corresponding rafting behaviors and creep properties are evaluated from the perspective of the changes in second-order moment invariant map (SOMIM) and stress/strain fields. The results show that as the W content increases, the volume fraction of the γ' phase increases, the plastic strain in the γ matrix reduces, and rafting occurs with accelerated rate, which enhances the creep property. Further, the SOMIM analysis shows that the raft structure leads to a steady creep behavior in 9W and 10W alloys. In addition, the alloy with a high W content has a high misfit stress in the γ matrix, which leads to a low plastic strain.

Key words:  Co-based superalloy      phase field simulation      creep      rafting     
Received:  23 March 2023     
ZTFLH:  TG146.1  
Fund: National Natural Science Foundation of China(51971174);National Natural Science Foundation of China(52031012);National Science and Technology Major Project(J2019-VI-0020-0135);National Key Research and Development Program of China(2017YFB0702902);Research Fund of the State Key Laboratory of Solidification Processing (NPU), China(2022-TZ-01)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00118     OR     https://www.ams.org.cn/EN/Y2023/V59/I9/1209

AlloyElastic constant of γ / GPaElastic constant of γ' / GPa
C11mC12mC44mC11pC12pC44p
Co-9Al-8W (8W)315209160361190212
Co-9Al-9W (9W)316363
Co-9Al-10W (10W)317364
Table 1  Elastic constants of γ and γ' phases for Co-9Al-xW (x = 8, 9, 10; atomic fraction, %) alloys
Alloyr0mr0p
8W18210
9W26235
10W30260
Table 2  Initial threshold r0m and r0p of slip system for γ matrix and γ' precipitate, respectively
Fig.1  Octahedral slip systems of fcc structure
(a) (111) plane (b) (1¯11) plane (c) (11¯1) plane (d) (111¯) plane
Fig.2  Simulated and experimental[9] creep property curves of Co-9Al-xW alloys
(a) creep strain (b) creep rate
Fig.3  Simulated (a-c) and experimental[9] (d-f) results of γ/γ' micrstructures at different plastic strains (1.0%, 1.5%, 2.0%, 3.0%) during 900oC, 275 MPa compressive creep for alloys with different W contents (The arrows represent the applied compressive stress σa; the red elliptical regions imply the corners of γ' precipitate protruding outward; the red rectangular region and the green elliptical region implies the formation of continuous rafts and “small island” γ matrix embedded in the rafted γ', respectively) (a, d) 8W (b, e) 9W (c) 10W (f) 11W (Co-9Al-11W)
Fig.4  Second order moment invariant maps (SOMIM) for 8W (a1-a4), 9W (b1-b4), and 10W (c1-c4) at strains of 1.0% (a1-c1), 1.5% (a2-c2), 2.0% (a3-c3), and 3.0% (a4-c4) (ω¯1, ω¯2—second order moment invariants)
Fig.5  Fraction of γʹ precipitates in the SOMIM for which 0 < ω¯1 ≤ 0.5
Fig.6  Raft structure characteristics variations during 900oC, 275 MPa creep for 8W, 9W, and 10W alloys
(a) γ' volume fraction (b) raft thickness (c) raft length (d) γ channel width
Fig.7  Evolution of plastic strain during creep for alloys 8W (a), 9W (b) and 10W (c), and mean strain in γ (d) and γ' (e) phases (The box areas show the large plastic deformations)
Fig.8  Evolution of resolved shear stress during creep for alloy 8W (a), 9W (b) and 10W (c), and mean resolved shear stress in γ phase (d) and γ' phase (e)
Fig.9  Evolution of resistance results from dislocation interaction for alloy 8W (a), 9W (b) and 10W (c), and mean resistance in γ phase (d) and γ' phase (e)
Fig.10  Mean driving forces of dislocation activity in γ phase (a) and γ' phase (b)
Fig.11  Evolution of mean internal stresses (a, b) and mean σ33 (c, d) in γ phase (a, c) and γ' phase (b, d)
1 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
pmid: 16601187
2 Titus M S, Suzuki A, Pollock T M. High Temperature creep of new L12 containing cobalt-base superalloys [A]. Superalloys 2012 [C]. Hoboken: Wiley, 2012: 823
3 Bauer A, Neumeier S, Pyczak F, et al. Creep properties of different γ'-strengthened Co-base superalloys [J]. Mater. Sci. Eng., 2012, A550: 333
4 Xue F, Zenk C H, Freund L P, et al. Double minimum creep in the rafting regime of a single-crystal Co-base superalloy [J]. Scr. Mater., 2018, 142: 129
doi: 10.1016/j.scriptamat.2017.08.039
5 Lu S, Antonov S, Li L F, et al. Two steady-state creep stages in Co-Al-W-base single-crystal superalloys at 1273 K/137 MPa [J]. Metall. Mater. Trans., 2018, 49A: 4079
6 Tanaka K, Ooshima M, Tsuno N, et al. Creep deformation of single crystals of new Co-Al-W-based alloys with fcc/L12 two-phase microstructures [J]. Philos. Mag., 2012, 92: 4011
doi: 10.1080/14786435.2012.700416
7 Titus M S, Suzuki A, Pollock T M. Creep and directional coarsening in single crystals of new γ-γ' cobalt-base alloys [J]. Scr. Mater., 2012, 66: 574
doi: 10.1016/j.scriptamat.2012.01.008
8 Shinagawa K, Omori T, Oikawa K, et al. Ductility enhancement by boron addition in Co-Al-W high-temperature alloys [J]. Scr. Mater., 2009, 61: 612
doi: 10.1016/j.scriptamat.2009.05.037
9 Pyczak F, Bauer A, Göken M, et al. The effect of tungsten content on the properties of L12-hardened Co-Al-W alloys [J]. J. Alloys Compd., 2015, 632: 110
doi: 10.1016/j.jallcom.2015.01.031
10 Bocchini P J, Sudbrack C K, Sauza D J, et al. Effect of tungsten concentration on microstructures of Co-10Ni-6Al-(0,2,4,6)W-6Ti(at%) cobalt-based superalloys [J]. Mater. Sci. Eng., 2017, A700: 481
11 Tourret D, Liu H, Llorca J. Phase-field modeling of microstructure evolution: Recent applications, perspectives and challenges [J]. Prog. Mater. Sci., 2022, 123: 100810
doi: 10.1016/j.pmatsci.2021.100810
12 Gaubert A, Le Bouar Y, Finel A. Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys [J]. Philos. Mag., 2010, 90: 375
doi: 10.1080/14786430902877802
13 Cottura M, Le Bouar Y, Finel A, et al. A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys [J]. J. Mech. Phys. Solids, 2012, 60: 1243
doi: 10.1016/j.jmps.2012.04.003
14 Wang C, Ali M A, Gao S W, et al. Combined phase-field crystal plasticity simulation of P- and N-type rafting in Co-based superalloys [J]. Acta Mater., 2019, 175: 21
doi: 10.1016/j.actamat.2019.05.063
15 Wang D, Li Y S, Shi S J, et al. Phase-field simulation of γ' precipitates rafting and creep property of Co-base superalloys [J]. Mater. Des., 2020, 196: 109077
doi: 10.1016/j.matdes.2020.109077
16 Yang M, Zhang J, Wei H, et al. Study of γ′ rafting under different stress states—A phase-field simulation considering viscoplasticity [J]. J. Alloys Compd., 2018, 769: 453
doi: 10.1016/j.jallcom.2018.07.317
17 Ali M A, Amin W, Shchyglo O, et al. 45-degree rafting in Ni-based superalloys: A combined phase-field and strain gradient crystal plasticity study [J]. Int. J. Plast., 2020, 128: 102659
doi: 10.1016/j.ijplas.2020.102659
18 Zhou N, Shen C, Mills M, et al. Large-scale three-dimensional phase field simulation of γ'-rafting and creep deformation [J]. Philos. Mag., 2010, 90: 405
doi: 10.1080/14786430903081990
19 Nguyen L, Shi R P, Wang Y Z, et al. Quantification of rafting of γ' precipitates in Ni-based superalloys [J]. Acta Mater., 2016, 103: 322
doi: 10.1016/j.actamat.2015.09.060
20 Yang M, Zhang J, Wei H, et al. A phase-field model for creep behavior in nickel-base single-crystal superalloy: Coupled with creep damage [J]. Scr. Mater., 2018, 147: 16
doi: 10.1016/j.scriptamat.2017.12.008
21 Yang M, Zhang J, Gui W M, et al. Coupling phase field with creep damage to study γ' evolution and creep deformation of single crystal superalloys [J]. J. Mater. Sci. Technol., 2021, 71: 129
doi: 10.1016/j.jmst.2020.07.036
22 Chen J, Guo M, Yang M, et al. Double minimum creep processing and mechanism for γ' strengthened cobalt-based superalloy [J]. J. Mater. Sci. Technol., 2022, 112: 123
doi: 10.1016/j.jmst.2021.10.015
23 Chen L Q, Zhao Y H. From classical thermodynamics to phase-field method [J]. Prog. Mater. Sci., 2022, 124: 100868
doi: 10.1016/j.pmatsci.2021.100868
24 Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys [J]. Acta Mater., 2013, 61: 4266
doi: 10.1016/j.actamat.2013.03.052
25 Kim S G, Kim W T, Suzuki T. Phase-field model for binary alloys [J]. Phys. Rev., 1999, 60E: 7186
26 Wang P S, Xiong W, Kattner U R, et al. Thermodynamic re-assessment of the Al-Co-W system [J]. Calphad, 2017, 59: 112
doi: 10.1016/j.calphad.2017.09.007
27 Zhao Y H. Co-precipitated Ni/Mn shell coated nano Cu-rich core structure: A phase-field study [J]. J. Mater. Res. Technol., 2022, 21: 546
doi: 10.1016/j.jmrt.2022.09.032
28 Dinsdale A T. SGTE data for pure elements [J]. Calphad, 1991, 15: 317
doi: 10.1016/0364-5916(91)90030-N
29 Zhou N, Lv D C, Zhang H L, et al. Computer simulation of phase transformation and plastic deformation in IN718 superalloy: Microstructural evolution during precipitation [J]. Acta Mater., 2014, 65: 270
doi: 10.1016/j.actamat.2013.10.069
30 Khachaturyan A G, Semenovskaya S, Tsakalakos T. Elastic strain energy of inhomogeneous solids [J]. Phys. Rev., 1995, 52B: 15909
31 Li D Y, Chen L Q. Shape evolution and splitting of coherent particles under applied stresses [J]. Acta Mater., 1998, 47: 247
doi: 10.1016/S1359-6454(98)00323-1
32 Moon K W, Campbell C E, Williams M E, et al. Diffusion in FCC Co-rich Co-Al-W alloys at 900 and 1000oC [J]. J. Phase Equilib. Diffus., 2016, 37: 402
doi: 10.1007/s11669-016-0486-7
33 Wen Y H, Lill J V, Chen S L, et al. A ternary phase-field model incorporating commercial CALPHAD software and its application to precipitation in superalloys [J]. Acta Mater., 2010, 58: 875
doi: 10.1016/j.actamat.2009.10.002
34 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system [J]. Mater. Trans., 2008, 49: 1474
doi: 10.2320/matertrans.MER2008073
35 Vladimirov I N, Reese S, Eggeler G. Constitutive modelling of the anisotropic creep behaviour of nickel-base single crystal superalloys [J]. Int. J. Mech. Sci., 2009, 51: 305
doi: 10.1016/j.ijmecsci.2009.02.004
36 Méric L, Poubanne P, Cailletaud G. Single crystal modeling for structural calculations: part 1—Model presentation [J]. J. Eng. Mater. Technol., 1991, 113: 162
doi: 10.1115/1.2903374
37 Cormier J, Cailletaud G. Constitutive modeling of the creep behavior of single crystal superalloys under non-isothermal conditions inducing phase transformations [J]. Mater. Sci. Eng., 2010, A527: 6300
38 Titus M S, Mottura A, Babu Viswanathan G, et al. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys [J]. Acta Mater., 2015, 89: 423
doi: 10.1016/j.actamat.2015.01.050
39 Franciosi P. The concepts of latent hardening and strain hardening in metallic single crystals [J]. Acta Metall., 1985, 33: 1601
doi: 10.1016/0001-6160(85)90154-3
40 Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
41 Méric L, Cailletaud G. Single crystal modeling for structural calculations: Part 2—Finite element implementation [J]. J. Eng. Mater. Technol., 1991, 113: 171
doi: 10.1115/1.2903375
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[4] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[8] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[9] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[10] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[11] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[12] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[13] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[14] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[15] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
No Suggested Reading articles found!