Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (1): 21-35    DOI: 10.11900/0412.1961.2019.00137
Overview Current Issue | Archive | Adv Search |
Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents
WU Jing,LIU Yongchang(),LI Chong,WU Yuting,XIA Xingchuan,LI Huijun
State Key Lab of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Download:  HTML  PDF(26034KB) 
Export:  BibTeX | EndNote (RIS)      

Owing to the high temperature resistance, excellent high temperature oxidation and corrosion resistance, low density and production cost, Ni3Al-based intermetallic alloys have broad applications and attract much attention. In order to widen the application field of the Ni3Al-based superalloy, it is urgently important to improve the high-temperature performance on the basis of good weldability. Under this background, in the composition design of Ni3Al alloy, the high Fe and Cr contents can effectively enhance the phase composition and weldability of Ni3Al-based intermetallic alloys. Based on this, the microstructural characterization and phase separation sequences during solidification of a newly designed multiphase Ni3Al-based intermetallic alloy modified with high Fe and Cr elements are analyzed. On account of the typical solidification structure of the multiphase Ni3Al-based intermetallic alloy comprising γ'+γ dendrite, interdendritic β and γ'-envelope, etc., the microstructural evolutions of the alloy under different solution cooling rates, high temperature annealing, and long-term ageing processes are summarized. The effects of its corresponding complex microstructural variables (size of primary γ' phase, morphology of β, phase evolution in the interior of β, widening of γ'-envelope) on the creep behaviors of the multiphase Ni3Al-based intermetallic alloy are systematically discussed. Recent advances in welding and joining of multiphase Ni3Al-based intermetallic alloy are summarized, and the development of multiphase Ni3Al-based intermetallic alloy is also prospected.

Key words:  superalloy      Ni3Al-based      composition design      heat treatment      microstructural evolution      creep behavior     
Received:  29 April 2019     
ZTFLH:  TG113.12  
Fund: National Natural Science Foundation of China(51474156);National Natural Science Foundation of China(51604193);National Natural Science Foundation of China(U1660201);National High Technology Research and Development Program of China(2015AA042504)
Corresponding Authors:  Yongchang LIU     E-mail:

Cite this article: 

WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents. Acta Metall Sin, 2020, 56(1): 21-35.

URL:     OR

Fig.1  SEM image of a newly designed as-cast multiphase Ni3Al-based intermetallic alloy
Fig.2  TEM bright-field images for the γ'+γ dendrite of multiphase Ni3Al-based intermetallic alloy at low (a) and high (b) magnification, and corresponding SAED patterns for marked areas of A (c) and B (d) in Fig.2b (The zone axis is parallel to [11?0]γ' and [011?]γ)
Fig.3  Schematics of the separating sequence of the main precipitates during solidification of a multiphase Ni3Al-based intermetallic alloy(a) first generation of γ dendrite (γD) from liquidoid of alloy(b) subsequent transformation of interdendritic β in residual liquidoid and precipitation of rod-like Cr3C2 carbides in interdendritic β(c) formation of γ'-envelope in the residual liquidoid around β(d) precipitations of cuboidal primary γ' phase (γ'I) in the γ dendrite and acicular γ' phase in the interdendritic β(e) precipitations of ultrafine secondary γ' phase (γ'II) in the γ-channels and spherical α-Cr particles in the interdendritic β
Fig.4  The average size and volume fraction of primary and secondary γ' precipitates in γ'+γ dendrite as functions of the applied cooling rates[73]
Fig.5  Low (a~c) and high (d~f) magnified SEM morphologies of the interdendritic β phase in alloy subjected to 1200?℃, 10?h solution treatment and cooled at water cooling (138?℃/s) (a, d), air cooling (72?℃/s) (b, e) and furnace cooling (0.05?℃/s) (c, f), revealing the effects of cooling rate on the evolution of the interdendritic β-matrix and interior precipitates (SFs—stacking faults) [73]
Fig.6  HRTEM images of the semi-spherical α-Cr particles in the interdendritic β-matrix of the alloy subjected to 1200?℃,10?h solution treatment and followed by air cooling (a~f)[73]
Fig.7  SEM images (a~e) and creep curves (f) of the 1160~1280 ℃, 10 h annealed and untreated as-cast samples, showing the aggregation and coarsening of the interdendritic β phase during the annealing process of multiphase Ni3Al-based intermetallic alloy and corresponding effects on creep properties at 800 ℃[65]


Interdendritic βSize of γ'+γ dendrite

Steady-state creep rate ε˙ss


Creep strain to fracture εtotal / %

Creep rupture life

ttotal / h

Volume fraction










Table 1  Microstructure information and corresponding creep properties at 800 ℃, 200 MPa of the multiphase Ni3Al-based intermetallic alloys after annealing treatments of 1160~1280 ℃ for 10 h[65]
Fig.8  SEM image of the formed R-type γ' rafts in the γ'+γ dendrite of as-cast alloy after 800 ℃, 1000 h long-term ageing treatment and crept up to fracture at 800 ℃, 220 MPa
Fig.9  SEM image of the intersected plate-like γ' precipitates in the interdendritic β of as-cast alloy after ageing at 800 ℃ for 1 h
Fig.10  Schematic diagrams for the widening mechanism of γ'-envelope phase in alloy(a) γ'-envelope with 2.1 μm in width and Cr23C6 carbides at the interfaces around the γ'-envelope of the 1200 ℃, 10 h annealed sample(b) γ'-envelope with 6.0 μm in width and Cr23C6 carbides in the interior of γ'-envelope of the 1200 ℃, 10 h annealing followed by 800 ℃, 1000 h aged sample
Fig.11  TEM image of dislocations in the γ′+γ dendrite of the 1200 ℃, 10 h annealing sample after crept up to fracture at 800 ℃, 200 MPa
Fig.12  Longitudinal microstructures near the fracture surface of 1200 ℃, 10 h annealing followed by 800 ℃, 1000 h aged sample after crept up to fracture at 800 ℃, 220 MPa, showing that the initiation and propagation of creep cracks at the grain boundaries (GBs) (a) and at the interface of γ'-envelope/interdendritic β, in the interior of β, and around the carbides in widened γ'-envelope (b)
Fig.13  Low- (a) and high- (b) magnified fracture surfaces of the 1200 ℃, 10 h annealing sample after 800 ℃, 1000 h ageing treatment crept up to fracture at 800 ℃, 220 MPa
[1] Huang Q Y, Li H K. Superalloys [M]. Beijing: Metallurgical Industry Press, 2000: 4
[1] (黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 4)
[2] Li J R, Xiong J C, Tang D Z. Advanced High Temperature Structural Materials and Technology (Book 1) [M]. Beijing: National Defense Industry Press, 2012: 5
[2] (李嘉荣, 熊继春, 唐定中. 先进高温结构材料与技术(上) [M]. 北京: 国防工业出版社, 2012: 5)
[3] Reed R C. The Superalloys Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006: 19
[4] Tian S G, Wu J, Shu D L, et al. Influence of element Re on deformation mechanism within γ′ phase of single crystal nickel-based superalloys during creep at elevated temperatures [J]. Mater. Sci. Eng., 2014, A616: 260
[5] Tian S G, Zhang B S, Shu D L, et al. Creep properties and deformation mechanism of the containing 4.5Re/3.0Ru single crystal nickel-based superalloy at high temperatures [J]. Mater. Sci. Eng., 2015, A643: 119
[6] Zhang Y G, Han Y F, Chen G L. Structural Intermetallics [M]. Beijing: National Defense Industry Press, 2001: 611
[6] (张永刚, 韩雅芳, 陈国良. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2001: 611)
[7] David S A, Deevi S C. Welding of unique and advanced ductile intermetallic alloys for high-temperature applications [J]. Sci. Technol. Weld. Join., 2017, 22: 681
[8] Westbrook J H. Defect structure and the temperature dependence of hardness of an intermetallic compound [J]. J. Electrochem. Soc., 1957, 104: 369
[9] Liu C T, Sikka V K. Nickel aluminides for structural use [J]. JOM, 1986, 38(5): 19
[10] Sikka V K, Mavity J T, Anderson K. Processing of nickel aluminides and their industrial applications [J]. Mater. Sci. Eng., 1992, A153: 712
[11] Sikka V K, Deevi S C, Viswanathan S, et al. Advances in processing of Ni3Al-based intermetallics and applications [J]. Intermetallics, 2000, 8: 1329
[12] Jozwik P, Polkowski W, Bojar Z. Applications of Ni3Al based intermetallic alloys—Current stage and potential perceptivities [J]. Materials, 2015, 8: 2537
[13] Deevi S C, Sikka V K. Nickel and iron aluminides: An overview on properties, processing, and applications [J]. Intermetallics, 1996, 4: 357
[14] Aoki K, Izumi O. Improvement in room temperature ductility of the L12 type intermetallic compound Ni3Al by boron addition [J]. J. Japan Inst. Met., 1979, 43: 1190
[15] Liu C T, White C L, Horton J A. Effect of boron on grain-boundaries in Ni3Al [J]. Acta Metall., 1985, 33: 213
[16] Horton J A, Miller M K. Atom probe analysis of grain boundaries in rapidly-solidified Ni3Al [J]. Acta Metall., 1987, 35: 133
[17] Guo J T, Li H, Sun C, et al. Effect of Zr, Cr and B additives on microstructure and mechanical properties of Ni3Al alloys [J]. Acta Metall. Sin., 1989, 25(6): 22
[17] (郭建亭, 李 辉, 孙 超等. Zr, Cr和B对Ni3Al合金组织和力学性能的影响 [J]. 金属学报, 1989, 25(6): 22)
[18] Li Y F, Guo J T, Zhou L F, et al. Effect of recrystallization on room-temperature mechanical properties of Zr-doped Ni3Al alloy [J]. Mater. Lett., 2004, 58: 1853
[19] Sikka V K, Santella M L, Angelini P, et al. Large-scale manufacturing of nickel aluminide transfer rolls for steel austenitizing furnaces [J]. Intermetallics, 2004, 12: 837
[20] Lee D B, Santella M L. High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B [J]. Mater. Sci. Eng., 2004, A374: 217
[21] Tan Y N, Zhao X H, Gui Z L. Development and application of BKHA series Ni3Al-based superalloy in Russia [J]. Aviat. Maint. Eng., 1997, (5): 6
[21] (谭永宁, 赵希宏, 桂中楼. 俄罗斯ВКНА系列Ni3Al基合金的发展和应用 [J]. 航空工程与维修, 1997, (5): 6)
[22] Han Y F, Li S H, Jin Y, et al. Effect of 900-1150 ℃ aging on the microstructure and mechanical properties of a DS casting Ni3Al-base alloy IC6 [J]. Mater. Sci. Eng., 1995, A192-193: 899
[23] Xiao C B, Han Y F, Li S S, et al. Effect of high temperature aging on microstructure and mechanical properties of a directionally solidified Ni3Al base alloy IC6A [J]. Trans. Nonferrous Met. Soc. China, 2002, 12: 656
[24] Li P, Li S S, Han Y F. Influence of solution heat treatment on microstructure and stress rupture properties of a Ni3Al base single crystal superalloy IC6SX [J]. Intermetallics, 2011, 19: 182
[25] Zhang H J, Wen W D, Cui H T. Behaviors of IC10 alloy over a wide range of strain rates and temperatures: Experiments and modeling [J]. Mater. Sci. Eng., 2009, A504: 99
[26] Zhang H J, Wen W D, Cui H T. An experimental study on constitutive equations of alloy IC10 over a wide range of temperatures and strain rates [J]. Mater. Des., 2012, 36: 130
[27] Li J, Hou J B, Zhang S. Effect of braze on creep strength at high temperature of TLP diffusion bonding joint for IC10 alloy [J]. Trans. Mater. Heat Treat., 2016, 37(1): 195
[27] (李 菊, 侯金保, 张 胜. 钎焊循环对IC10合金TLP扩散焊接头高温持久性能影响 [J]. 材料热处理学报, 2016, 37(1): 195)
[28] Cui D L, Xie X Y, Li S S, et al. Heat treatment of a Ni3Al-based single crystal alloy IC32 [J]. Mater. Sci. Forum, 2013, 747-748: 665
[29] Zhang X E, Luo H L, Li S P, et al. Effection of alloying elements on microstructures of MX 246 and MX 246A Ni3Al-based alloys [J]. J. Iron Steel Res. Inter., 2007, 14(5 suppl.1: 45
[30] Feng D, Li S P, Luo H L, et al. Microstructure and properties of modified cast Ni3Al-base MX246 alloys [J]. Acta Metall. Sin., 2002, 38: 1181
[30] (冯 涤, 李尚平, 骆合力等. 改性铸造Ni3Al基合金MX246组织与性能研究 [J]. 金属学报, 2002, 38: 1181)
[31] Wang J T, Han W, Luo H L, et al. Hot deformation behavior of Ni3Al-based alloy MX246A [J]. J. Iron Steel Res. Inter., 2014, 21: 264
[32] Luo H L, Li S P, Cao X, et al. A weldable and high-strength Ni3Al based MX246AG alloy [J]. J. Iron Steel Res., 2011, 23(suppl. 2): 559
[32] (骆合力, 李尚平, 曹 栩等. 可焊高强Ni3Al基MX246AG合金研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 559)
[33] Ochial S, Oya Y, Suzuki T. Alloying behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge [J]. Acta Metall., 1984, 32: 289
[34] Taub A I, Chang K M, Liu C T. Effects of testing environment on the elevated temperature ductility of boron-doped Ni3Al [J]. Scr. Metall., 1986, 20: 1613
[35] Liu C T, White C L, Lee E H. Effect of test environment on ductility and fracture behavior of boron-doped Ni3Al at 600 ℃ [J]. Scr. Metall., 1985, 19: 1247
[36] George E P, Liu C T, Pope D P. Environmental embrittlement: The major cause of room-temperature brittleness in polycrystalline Ni3Al [J]. Scr. Metall. Mater., 1992, 27: 365
[37] Liu C T, Jemian W, Inouye H, et al. Initial development of nickel and nickel-iron aluminides for structural uses (No.ORNL-6067) [R]. TN (USA): Oak Ridge National Laboratory, 1984
[38] Takasugi T, Izumi O, Masahashi N. Electronic and structural studies of grain boundary strength and fracture in Ll2 ordered alloys—II. On the effect of third elements in Ni3Al alloy [J]. Acta Metall., 1985, 33: 1259
[39] Guo J T. Effects of several minor elements on superalloys and their mechanism [J]. Chin. J. Nonferrous Met., 2011, 21: 465
[39] (郭建亭. 几种微量元素在高温合金中的作用与机理 [J]. 中国有色金属学报, 2011, 21: 465)
[40] Popov A A. Effect of electronic nature and substitution behavior of ternary microadditions on the ductility of polycrystalline nickel aluminides [J]. Acta Mater., 1997, 45: 1613
[41] Liu C T, White C L. Dynamic embrittlement of boron-doped Ni3Al alloys at 600 ℃ [J]. Acta Metall., 1987, 35: 643
[42] ?ermák J, Rothová V. Surface barrier for hydrogen permeability in Ni3Al—Influence of Cr, Fe and Zr [J]. Intermetallics, 2001, 9: 403
[43] Chen J Y, Zhao B, Feng Q, et al. Effects of Ru and Cr on γ/γ′ microstructural evolution of Ni-based single crystal superalloys during heat treatment [J]. Acta Metall. Sin., 2010, 46: 897
[43] (陈晶阳, 赵 宾, 冯 强等. Ru和Cr对镍基单晶高温合金γ/γ′热处理组织演变的影响 [J]. 金属学报, 2010, 46: 897)
[44] Chen J Y, Feng Q, Cao L M, et al. Improvement of stress-rupture property by Cr addition in Ni-based single crystal superalloy [J]. Mater. Sci. Eng., 2011, A528: 3791
[45] Ai C, Li S S, Zhao X B, et al. Influence of solidification history on precipitation behavior of TCP phase in a completely heat-treated Ni3Al based single crystal superalloy during thermal exposure [J]. J. Alloys Compd., 2017, 722: 740
[46] Shi Z X, Liu S Z, Wang X G, et al. Effects of Cr content on microstructure and mechanical properties of single crystal superalloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 776
[47] Sato A, Yeh A C, Kobayashi T, et al. Fifth generation Ni based single crystal superalloy with superior elevated temperature properties [J]. Energy Mater., 2007, 2: 19
[48] Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications [J]. Aerosp. Sci. Technol., 1999, 3: 513
[49] Sato A, Harada H, Yokokawa T, et al. The effects of ruthenium on the phase stability of fourth generation Ni-base single crystal superalloys [J]. Scr. Mater., 2006, 54: 1679
[50] Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
[50] (郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722)
[51] Dong J X, Xie X S. α-Cr precipitation behavior and its effect on high Cr-containing superalloys [J]. Acta Metall. Sin., 2005, 41: 1159
[51] (董建新, 谢锡善. 不同Cr含量高温合金中α-Cr相析出行为及作用 [J]. 金属学报, 2005, 41: 1159)
[52] Miller C, Field R, Kaufman M. Phase stability of γ-Ni2Cr and α-Cr in the Ni-Cr binary [J]. Acta Mater., 2018, 157: 1
[53] Nicholls J R, Rawlings R D. A M?ssbauer effect study of Ni3Al with iron additions [J]. Acta Metall., 1977, 25: 187
[54] David S A, Jemian W A, Liu C T, et al. Welding and weldability of nickel-iron aluminides [J]. Weld. Res. Suppl., 1985, 1: 22
[55] Guard R W, Westbrook J H. Alloying behavior of Ni3Al (γ-phase) [J]. Trans. AIMME, 1959, 215: 807
[56] Li Y F, Li C, Wu J, et al. Formation of multiply twinned mortensite plates in rapidly solidified Ni3Al-based superalloys [J]. Mater. Lett., 2019, 250: 147
[57] Rivlin V G, Raynor G V. Critical evaluation of constitution of aluminium-iran-silicon systems [J]. Int. Met. Rev., 1981, 26: 133
[58] Wu Y T, Liu Y C, Li C, et al. Deformation behavior and processing maps of Ni3Al-based superalloy during isothermal hot compression [J]. J. Alloys Compd., 2017, 712: 687
[59] Gao S, Hou J S, Dong K X, et al. Influences of cooling rate after solution treatment on microstructural evolution and mechanical properties of superalloy Rene 80 [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 261
[60] Behrouzghaemi S, Mitchell R J. Morphological changes of γ' precipitates in superalloy IN738LC at various cooling rates [J]. Mater. Sci. Eng., 2008, A498: 266
[61] Huang G C, Liu G Q, Feng M N, et al. The effect of cooling rates from temperatures above the γ′ solvus on the microstructure of a new nickel-based powder metallurgy superalloy [J]. J. Alloys Compd., 2018, 747: 1062
[62] Sajjadi S A, Elahifar H R, Farhangi H. Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500 [J]. J. Alloys Compd., 2008, 455: 215
[63] Singh A R P, Nag S, Hwang J Y, et al. Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy [J]. Mater. Charact., 2011, 62: 878
[64] Milenkovic S, Sabirov I, LLorca J. Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy [J]. Mater. Lett., 2012, 73: 216
[65] Wu J, Li C, Liu Y C, et al. Effect of annealing treatment on microstructure evolution and creep behavior of a multiphase Ni3Al-based superalloy [J]. Mater. Sci. Eng., 2019, A743: 623
[66] Liang Y C, Guo J T, Xie Y, et al. Effect of growth rate on the tensile properties of DS NiAl/Cr(Mo) eutectic alloy produced by liquid metal cooling technique [J]. Intermetallics, 2010, 18: 319
[67] Sheng L Y, Xie Y, Xi T F, et al. Microstructure characteristics and compressive properties of NiAl-based multiphase alloy during heat treatments [J]. Mater. Sci. Eng., 2011, A528: 8324
[68] Sheng L Y, Zhang W, Guo J T, et al. Microstructure evolution and mechanical properties' improvement of NiAl-Cr(Mo)-Hf eutectic alloy during suction casting and subsequent HIP treatment [J]. Intermetallics, 2009, 17: 1115
[69] Wang L, Shen J. Effect of withdrawal rate on the microstructure and room temperature mechanical properties of directionally solidified NiAl-Cr(Mo)-(Hf, Dy)-4Fe alloy [J]. J. Alloys Compd., 2016, 663: 187
[70] Lapin J, Pelachová T, Bajana O. Microstructure and mechanical properties of a directionally solidified and aged intermetallic Ni-Al-Cr-Ti alloy with β-γ'-γ-α structure [J]. Intermetallics, 2000, 8: 1417
[71] Kim S H, Wee D M, Oh M H. Effects of ternary additions on the thermoelastic martensitic transformation of NiAl [J]. Metall. Mater. Trans., 2003, 34A: 2089
[72] Zhou L, Mehta A, Cho K, et al. Composition-dependent interdiffusion coefficient, reduced elastic modulus and hardness in γ-, γ′- and β-phases in the Ni-Al system [J]. J. Alloys Compd., 2017, 727: 153
[73] Wu J, Li C, Liu Y C, et al. Influences of solution cooling rate on microstructural evolution of a multiphase Ni3Al-based intermetallic alloy [J]. Intermetallics, 2019, 109: 48
[74] Qian M, Luo H L, Ding C H, et al. The effect of long term high temperature annealing on twinning and detwinning of the wrought Ni3Al-based alloy [J]. Mater. Charact., 2017, 132: 458
[75] Misra A, Gibala R. Plasticity in multiphase intermetallics [J]. Intermetallics, 2000, 8: 1025
[76] Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56: 4277
[77] Duan X T, Li S P, Luo H L, et al. Heat treatment process for Ni3Al-based wrought superalloy [J]. J. Iron Steel Res., 2015, 27(11): 60
[77] (段修涛, 李尚平, 骆合力等. 变形Ni3Al基合金的热处理工艺 [J]. 钢铁研究学报, 2015, 27(11): 60)
[78] Wu Y T, Liu Y C, Li C, et al. Coarsening behavior of γ′ precipitates in the γ'+γ area of a Ni3Al-based alloy [J]. J. Alloys Compd., 2019, 771: 526
[79] Cui C Y, Guo J T, Qi Y H, et al. Effect of Hf on Microstructure and high-temperature strength of a cast NiAl/Cr(Mo) alloy [J]. Mater. Trans., 2001, 42: 1700
[80] Zaitsev A A, Sentyurina Z A, Levashov E A, et al. Structure and properties of NiAl-Cr(Co, Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting. Part 2—Evolution of the structure and mechanical behavior at high temperature [J]. Mater. Sci. Eng., 2017, A690: 473
[81] Zaitsev A A, Sentyurina Z A, Levashov E A, et al. Structure and properties of NiAl-Cr(Co, Hf) alloys prepared by centrifugal SHS casting. Part 1—Room temperature investigations [J]. Mater. Sci. Eng., 2017, A690: 463
[82] Pekarskaya E, Botton G A, Jones C N, et al. The effect of annealing on the microstructure and tensile properties of a β/γ' Ni-Al-Fe alloy [J]. Intermetallics, 2000, 8: 903
[83] Misra A, Gibala R, Noebe R D. Deformation and fracture behavior of a directionally solidified β/γ' Ni-30 at. pct Al alloy [J]. Metall. Mater. Trans., 1999, 30A: 1003
[84] Yang R, Leake J A, Cahn R W. Three-phase (β+β'+γ') Ni-Al-Ti-(Cr, Fe) alloys for high temperature use [J]. Mater. Sci. Eng., 1992, A152: 227
[85] Hu L, Hu W, Gottstein G, et al. Investigation into microstructure and mechanical properties of NiAl-Mo composites produced by directional solidification [J]. Mater. Sci. Eng., 2012, A539: 211
[86] Peng W K, Run C S, Dai Y F, et al. Study on welding properties and technology of Ni3Al-based superalloy JG4356 [J]. Hot Work. Technol., 2019, 48(1): 55
[86] (彭为康, 润长生, 戴延丰等. Ni3Al基高温合金JG4356焊接性能和工艺研究 [J]. 热加工工艺, 2019, 48(1): 55)
[87] Yang Z W, Lian J, Cai X Q, et al. Microstructure and mechanical properties of Ni3Al-based alloy joint transient liquid phase bonded using Ni/Ti interlayer [J]. Intermetallics, 2019, 109: 179
[88] Liu Y C, Zhang H J, Li C, et al. Microstructure evolution of inconel 718 superalloy during hot working and its recent development tendency [J]. Acta Metall. Sin., 2018, 54: 1653
[88] (刘永长, 张宏军, 李 冲等. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54: 1653)
[89] Liu Y C, Guo Q Y, Li C, et al. Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. Sin., 2016, 52: 1259
[89] (刘永长, 郭倩颖, 李 冲等. Inconel 718高温合金中析出相演变研究进展 [J]. 金属学报, 2016, 52: 1259)
[90] Zhang H J, Li C, Guo Q Y, et al. Improving creep resistance of nickel-based superalloy Inconel 718 by tailoring gamma double prime variants [J]. Scr. Mater., 2019, 164: 66
[91] Wang F, Xu W L, Ma D X, et al. Co-growing mechanism of γ/γ' eutectic on MC-type carbide in Ni-based single crystal superalloys [J]. J. Alloys Compd., 2019, 792: 505
[92] Zhang X, Li H W, Zhan M. Mechanism for the macro and micro behaviors of the Ni-based superalloy during electrically-assisted tension: Local Joule heating effect [J]. J. Alloys Compd., 2018, 742: 480
[93] Reed R C, Tao T, Warnken N. Alloys-by-design: Application to nickel-based single crystal superalloys [J]. Acta Mater., 2009, 57: 5898
[94] Tian C G, Han G M, Cui C Y, et al. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy [J]. Mater. Des., 2014, 64: 316
[95] Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
[96] Zhang H J, Li C, Liu Y C, et al. Effect of hot deformation on γ" and δ phase precipitation of Inconel 718 alloy during deformation&isothermal treatment [J]. J. Alloys Compd., 2017, 716: 65
[97] Wan H Y, Zhou Z J, Li C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting [J]. J. Mater. Sci. Technol., 2018, 34: 1799
[98] Wang G W, Liang J J, Yang Y H, et al. Effects of scanning speed on microstructure in laser surface-melted single crystal superalloy and theoretical analysis [J]. J. Mater. Sci. Technol., 2018, 34: 1315
[99] Bai P, Zhang H R, Wan B B, et al. Effect of trace O element on high-temperature wettability between Ni3Al melt and Y2O3 ceramic [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 552
[100] Wu J, Li C, Liu Y C, et al. Formation and widening mechanisms of envelope structure and its effect on creep behavior of a multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A763: 138158
[101] Wu J, Li C, Liu Y C, et al. Precipitation of intersected plate-like γ' phase in β and its effect on creep behavior of multiphase Ni3Al-based intermetallic alloy [J]. Mater. Sci. Eng., 2019, A767: 138439
[1] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] MA Dexin,WANG Fu,XU Weitai,XU Wenliang,ZHAO Yunxing. Formation of Sliver Defects in Single CrystalCastings of Superalloys[J]. 金属学报, 2020, 56(3): 301-310.
[4] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[5] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[6] LIU Xingjun, CHEN Yuechao, LU Yong, HAN Jiajia, XU Weiwei, GUO Yihui, YU Jinxin, WEI Zhenbang, WANG Cuiping. Present Research Situation and Prospect of Multi-Scale Design in Novel Co-Based Superalloys: A Review[J]. 金属学报, 2020, 56(1): 1-20.
[7] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[8] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[9] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[10] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] DU Jinhui,LV Xudong,DONG Jianxin,SUN Wenru,BI Zhongnan,ZHAO Guangpu,DENG Qun,CUI Chuanyong,MA Huiping,ZHANG Beijiang. Research Progress of Wrought Superalloys in China[J]. 金属学报, 2019, 55(9): 1115-1132.
[12] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[13] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[14] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application[J]. 金属学报, 2019, 55(9): 1133-1144.
No Suggested Reading articles found!