Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (3): 405-416    DOI: 10.11900/0412.1961.2022.00180
Research paper Current Issue | Archive | Adv Search |
Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy
LI Longjian1, LI Rengeng2, ZHANG Jiajun1, CAO Xinghao1, KANG Huijun1(), WANG Tongmin1
1Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2Key Laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 210009, China
Cite this article: 

LI Longjian, LI Rengeng, ZHANG Jiajun, CAO Xinghao, KANG Huijun, WANG Tongmin. Effects of Cryorolling on Properties and Precipitation Behavior of a High-Strength and High-Conductivity Cu-1Cr-0.2Zr-0.25Nb Alloy. Acta Metall Sin, 2024, 60(3): 405-416.

Download:  HTML  PDF(4278KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The performance requirements for copper alloys are increasing with the rapid development of transportation, electrical, aerospace, and electronics in modern industry. Cu-Cr-Zr alloy has exceptional strength and electrical conductivity as typical precipitation strengthening copper alloy. Strength and conductivity are mutually exclusive properties. The goal of realizing the high strength and conductivity of copper is a crucial subject in modern copper industry development. In this study, the effects of cryorolling on the microstructure, mechanical properties, and electrical conductivity of Cu-1Cr-0.2Zr-0.25Nb alloy were examined and the effects of numerous aging processes on the type, morphology, and distribution of precipitates were investigated. The findings depict that the Cu-1Cr-0.2Zr-0.25Nb alloy primarily comprised the Cr phase, Zr-rich phase, Cr2Nb phase, and Cu matrix phase. The fcc Cr nanoprecipitates can be precipitated in Cu-1Cr-0.2Zr-0.25Nb alloy after aging at 450oC for 30 min. The bcc Cr nanoprecipitates can be formed after aging at 450oC for 300 min. After cryorolling and aging treatment, the mixed structures, such as nanoprecipitation phase, nanodeformation twins, and dislocations in the Cu-1Cr-0.2Zr-0.25Nb alloy are produced and this alloy demonstrates remarkable comprehensive properties. The tensile strength of 700 MPa and electrical conductivity of 73.29%IACS were attained for the cryorolled Cu-1Cr-0.2Zr-0.25Nb alloy after aging at 450oC for 30 min; after aging at 450oC for 300 min, the conductivity can reach 79.81%IACS, and the corresponding tensile strength, yield strength, and hardness are 646 MPa, 606 MPa, and 212 HV, respectively. Combining the experimental findings with the computations of contribution to strengthening, it can reasonably be inferred that dislocation and precipitation strengthening were the primary strengthening mechanisms of Cu-1Cr-0.2Zr-0.25Nb alloy.

Key words:  Cu-1Cr-0.2Zr-0.25Nb alloy      cryorolling      precipitate      strength      electrical conductivity     
Received:  17 April 2022     
ZTFLH:  TG146.11  
Fund: National Natural Science Foundation of China(51971052);National Natural Science Foundation of China(51927801);National Natural Science Foundation of China(51690163);National Natural Science Foundation of China(52001161);Liaoning Revitalization Talents Program(XLYC2007183);Innovation Foundation of Science and Technology of Dalian City(2020JJ25CY002);Innovation Foundation of Science and Technology of Dalian City(2020JJ26GX045)
Corresponding Authors:  KANG Huijun, professor, Tel: (0411)84709500, E-mail: kanghuijun@dlut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00180     OR     https://www.ams.org.cn/EN/Y2024/V60/I3/405

SampleProcess
RⅡAs-solution-treated sample→60%RTR→intermediate aging (400oC, 120 min)→30%RTR
CRⅡAs-solution-treated sample→60%CR→intermediate aging (400oC, 120 min)→30%CR
RⅡ-FA30As-solution-treated sample→60%RTR→intermediate aging (400oC, 120 min)→30%RTR→FA (450oC, 30 min)
CRⅡ-FA30As-solution-treated sample→60%CR→intermediate aging (400oC, 120 min)→30%CR→FA (450oC, 30 min)
RⅡ-FA300As-solution-treated sample→60%RTR→intermediate aging (400oC, 120 min)→30%RTR→FA (450oC, 300 min)
CRⅡ-FA300As-solution-treated sample→60%CR→intermediate aging (400oC, 120 min)→30%CR→FA (450oC, 300 min)
Table 1  Processes of Cu-1Cr-0.2Zr-0.25Nb sample
Fig.1  EPMA backscattered electron images of as-cast Cu-1Cr-0.2Zr-0.25Nb sample (a) and CRⅡ-FA300 sample (b)
Fig.2  EPMA map scanning analyses of Cr2Nb phase in CRⅡ-FA300 sample
(a) backscattered electron image (Inset shows the EDS analysis result of area A)
(b-e) element mappings of Cu (b), Cr (c), Zr (d), and Nb (e) corresponding to Fig.2a
Fig.3  EPMA map scanning analyses of Cr and Zr phase in CRⅡ-FA300 sample
(a) backscattered electron image
(b-e) element mappings of Cu (b), Cr (c), Zr (d), and Nb (e) corresponding to Fig.3a
(f) statistics distribution of Cr phase size (dave—average size)
Fig.4  TEM analyses of CRⅡ-FA30 sample
(a) TEM image of precipitates (b) HRTEM image of precipitates
(c) fast Fourier transformation (FFT) image of precipitates (d) schematic of FFT figure in Fig.4c
Fig.5  TEM analyses of precipitates in CRⅡ-FA300 sample
(a) bright-field TEM image (Inset shows the SAED pattern of precipitates)
(b) HRTEM image of precipitates
(c, d) FFT images of precipitates of region A (c) and region B (d) in Fig.5b
Fig.6  TEM image and element maps of Cr2Nb phase in CRⅡ-FA300 sample
(a) TEM image
(b-e) individual element mappings of Cu (b), Cr (c), Zr (d), and Nb (e) corresponding to Fig.6a
(f) combined composition map
Fig.7  TEM images of CRⅡ-FA300 sample
(a) high-density dislocation (b) deformation twin
Fig.8  TEM images of RⅡ-FA300 sample
(a) deformation twin and detwinning (b) precipitates and subgrain
Fig.9  Engineering stress-strain curves of the Cu-1Cr-0.2Zr-0.25Nb samples
Sample

σs

MPa

σb

MPa

C

%IACS

ρ

1014 m-2

δ

%

RⅡ650 ± 6694 ± 358.23 ± 0.0828.96.3
CRⅡ694 ± 4740 ± 158.15 ± 0.0635.94.9
RⅡ-FA30631 ± 13669 ± 873.67 ± 0.2320.18.4
CRⅡ-FA30654 ± 6700 ± 273.29 ± 0.1522.46.7
RⅡ-FA300584 ± 8621 ± 280.27 ± 0.0916.88.8
CRⅡ-FA300606 ± 9646 ± 179.81 ± 0.1018.18.9
Table 2  Strength, elongation, electrical conductivity, and dislocation density for Cu-1Cr-0.2Zr-0.25Nb samples
Fig.10  Fitting curves of XRD spectra for CRⅡ-FA300 sample
ParameterSymbolUnitValueRef.
Shear modulus of Cu alloyGGPa44[35]
Taylor factorM3.06[36]
Burgers vector modulusbnm0.2556[35]
Poisson's ratioν0.33[37]
Maximum volume fraction of precipitatesVCr-Max%0.9This work
Minimum value of conductivityC0%IACS29.30This work
Maximum value of conductivityCMax%IACS83.46This work
Transformation fraction of precipitation for CRⅡ-FA300 sampleXCRII-FA300%93.26This work
Volume fraction of the precipitates for CRⅡ-FA300 samplefCRII-FA300%0.839This work
Mean radius of the precipitates for CRⅡ-FA300 samplerCRII-FA300nm6.1This work
Table 3  Parameters used in yield strength calculation
1 Li Z Y, Yang L J, Xu C, et al. Effect of aging temperature on hard phase evolution of nickel aluminum bronze [J]. Chin. J. Nonferrous Met., 2016, 26: 766
李振亚, 杨丽景, 许 赪 等. 时效温度对镍铝青铜合金的硬质相演变的影响 [J]. 中国有色金属学报, 2016, 26: 766
2 Wang Q J, Zhou X, Liang B, et al. High temperature tensile properties and fracture mechanism of ultra-fine grain Cu-Cr-Zr alloy [J]. Acta Metall. Sin., 2016, 52: 1477
doi: 10.11900/0412.1961.2016.00073
王庆娟, 周 晓, 梁 博 等. 超细晶Cu-Cr-Zr合金的高温拉伸性能及断裂机制 [J]. 金属学报, 2016, 52: 1477
doi: 10.11900/0412.1961.2016.00073
3 Chen J S, Wang J F, Xiao X P, et al. Contribution of Zr to strength and grain refinement in Cu-Cr-Zr alloy [J]. Mater. Sci. Eng., 2019, A756: 464
4 Song L N, Liu J B, Huang L Y, et al. Effect of heavily drawing on the microstructure and properties of Cu-Cr Alloys [J]. Acta Metall. Sin., 2012, 48: 1459
doi: 10.3724/SP.J.1037.2012.00263
宋鲁男, 刘嘉斌, 黄六一 等. 强变形对Cu-Cr合金组织性能的影响 [J]. 金属学报, 2012, 48: 1459
doi: 10.3724/SP.J.1037.2012.00263
5 Li Z, Xiao Z, Jiang Y B, et al. Composition design, phase transition and fabrication of copper alloys with high strength and electrical conductivity [J]. Chin. J. Nonferrous Met., 2019, 29: 2009
李 周, 肖 柱, 姜雁斌 等. 高强导电铜合金的成分设计、相变与制备 [J]. 中国有色金属学报, 2019, 29: 2009
6 Feng P, Chen W G, Yan F L, et al. Research progress of Cu-Cr-Zr copper alloys with high strength and high conductivity [J]. Electr. Eng. Mater., 2019, (2): 11
冯 培, 陈文革, 闫芳龙 等. 高强高导Cu-Cr-Zr系合金的研究进展 [J]. 电工材料, 2019, (2): 11
7 Wang M P, Jia Y L, Li Z, et al. Advanced Copper Alloy with High Strength and Conductivity [M]. Changsha: Central South University Press, 2015: 1
汪明朴, 贾延琳, 李 周 等. 先进高强导电铜合金 [M]. 长沙: 中南大学出版社, 2015: 1
8 Sun Y Q, Peng L J, Huang G J, et al. Effects of Mg addition on the microstructure and softening resistance of Cu-Cr alloys [J]. Mater. Sci. Eng., 2020, A776: 139009
9 Sarkar A, Prasad M J N V, Murty S V S N. Effect of initial grain size on hot deformation behaviour of Cu-Cr-Zr-Ti alloy [J]. Mater. Charact., 2020, 160: 110112
doi: 10.1016/j.matchar.2019.110112
10 Wu X, Wang R C, Peng C Q, et al. Low-temperature annealing behavior and tensile properties of the rapidly solidified Cu3Ag0.5-Zr0.4Cr0.35Nb alloy reinforced by cold rolling [J]. J. Alloys Compd., 2020, 828: 154371
doi: 10.1016/j.jallcom.2020.154371
11 Xie H F, Mi X J, Huang G J, et al. Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy [J]. Rare Met., 2011, 30: 650
doi: 10.1007/s12598-011-0444-9
12 Shen D P, Xu N, Gong M Y, et al. Improved tensile strength and electrical conductivity in Cu-Cr-Zr alloys by controlling the precipitation behavior through severe warm rolling [J]. J. Mater. Sci., 2020, 55: 12499
doi: 10.1007/s10853-020-04849-3
13 Purcek G, Yanar H, Demirtas M, et al. Microstructural, mechanical and tribological properties of ultrafine-grained Cu-Cr-Zr alloy processed by high pressure torsion [J]. J. Alloys Compd., 2020, 816: 152675
doi: 10.1016/j.jallcom.2019.152675
14 Huang A H, Wang Y F, Wang M S, et al. Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment [J]. Mater. Sci. Eng., 2019, A746: 211
15 Wang Y P, Fu R D, Li Y J, et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryogenic friction stir processing and subsequent annealing treatment [J]. Mater. Sci. Eng., 2019, A755: 166
16 Hou J P, Sun P F, Wang Q, et al. Breaking the trade-off relation between strength and electrical conductivity: Heterogeneous grain design [J]. Acta Metall Sin, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
侯嘉鹏, 孙朋飞, 王 强 等. 突破强度-导电率制约关系:晶粒异构设计 [J]. 金属学报, 2022, 58: 1467
doi: 10.11900/0412.1961.2022.00222
17 Guo X L, Xiao Z, Qiu W T, et al. Microstructure and properties of Cu-Cr-Nb alloy with high strength, high electrical conductivity and good softening resistance performance at elevated temperature [J]. Mater. Sci. Eng., 2019, A749: 281
18 Anderson K R, Groza J R, Dreshfield R L, et al. High-performance dispersion-strengthened Cu-8Cr-4Nb alloy [J]. Metall. Mater. Trans., 1995, 26A: 2197
19 Liu X J, Jiang Z P, Wang C P, et al. Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-Cr-Nb and Cu-Cr-Co systems [J]. J. Alloys Compd., 2009, 478: 287
doi: 10.1016/j.jallcom.2008.11.162
20 Thoma D J, Perepezko J H. An experimental evaluation of the phase relationships and solubilities in the Nb-Cr system [J]. Mater. Sci. Eng., 1992, A156: 97
21 Wen B, Tian Y J. Mechanical behaviors of nanotwinned metals and nanotwinned covalent materials [J]. Acta Metall. Sin., 2021, 57: 1380
doi: 10.11900/0412.1961.2021.00291
温 斌, 田永君. 纳米孪晶金属和纳米孪晶共价材料的力学行为 [J]. 金属学报, 2021, 57: 1380
22 Zhang Z Y, Sun L X, Tao N R. Raising thermal stability of nanograins in a CuCrZr alloy by precipitates on grain boundaries [J]. J. Alloys Compd., 2021, 867: 159016
doi: 10.1016/j.jallcom.2021.159016
23 Li R G, Guo E Y, Chen Z N, et al. Optimization of the balance between high strength and high electrical conductivity in CuCrZr alloys through two-step cryorolling and aging [J]. J. Alloys Compd., 2019, 771: 1044
doi: 10.1016/j.jallcom.2018.09.040
24 Li R G, Zhang S R, Zou C L, et al. The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys [J]. Mater. Sci. Eng., 2019, A758: 130
25 Purcek G, Yanar H, Shangina D V, et al. Influence of high pressure torsion-induced grain refinement and subsequent aging on tribological properties of Cu-Cr-Zr alloy [J]. J. Alloys Compd., 2018, 742: 325
doi: 10.1016/j.jallcom.2018.01.303
26 Zhang Z Y, Sun L X, Tao N R. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy [J]. J. Mater. Sci. Technol., 2020, 48: 18
doi: 10.1016/j.jmst.2019.12.022
27 Ding Z Y, Jia S G, Ning X M, et al. Aging properties of high-strength and high-conductivity Cu-Cr-Zr alloy [J]. Chin. J. Nonferrous Met., 2017, 27: 2420
丁宗业, 贾淑果, 宁向梅 等. 高强高导Cu-Cr-Zr合金时效性能 [J]. 中国有色金属学报, 2017, 27: 2420
28 Shen B, Cheng J Y, Li H Y. Dynamics of phase transformation of Cu-Cr-Zr-Mg alloy [J]. Trans. Mater. Heat Treat., 2014, 35(9): 121
沈 斌, 程建奕, 李海英. Cu-Cr-Zr-Mg合金的相变动力学 [J]. 材料热处理学报, 2014, 35(9): 121
29 Peng L J, Xie H F, Huang G J, et al. The phase transformation and strengthening of a Cu-0.71 wt% Cr alloy [J]. J. Alloys Compd., 2017, 708: 1096
doi: 10.1016/j.jallcom.2017.03.069
30 Yang Y, Wang L, Snead L, et al. Development of novel Cu-Cr-Nb-Zr alloys with the aid of computational thermodynamics [J]. Mater. Des., 2018, 156: 370
doi: 10.1016/j.matdes.2018.07.003
31 Zhang Y, Guo J M, Chen J H, et al. On the stacking fault energy related deformation mechanism of nanocrystalline Cu and Cu alloys: A first-principles and TEM study [J]. J. Alloys Compd., 2019, 776: 807
doi: 10.1016/j.jallcom.2018.10.275
32 Sun X L, Jie J C, Wang T M, et al. Effect of two-step cryorolling and aging on mechanical and electrical properties of a Cu-Cr-Ni-Si alloy for lead frames applications [J]. Mater. Sci. Eng., 2021, A809: 140521
33 Zhang S R, Kang H J, Li R G, et al. Microstructure evolution, electrical conductivity and mechanical properties of dual-scale Cu5Zr/ZrB2 particulate reinforced copper matrix composites [J]. Mater. Sci. Eng., 2019, A762: 138108
34 Gamin Y V, Muñoz Bolaños J A, Aleschenko A S, et al. Influence of the radial-shear rolling (RSR) process on the microstructure, electrical conductivity and mechanical properties of a Cu-Ni-Cr-Si alloy [J]. Mater. Sci. Eng., 2021, A822: 141676
35 Zhang S R, Kang H J, Wang Z C, et al. Microstructure and properties of dual-scale particulate reinforced copper matrix composites with superior comprehensive properties [J]. J. Alloys Compd., 2021, 860: 157888
doi: 10.1016/j.jallcom.2020.157888
36 Wu Y K, Li Y, Lu J Y, et al. Correlations between microstructures and properties of Cu-Ni-Si-Cr alloy [J]. Mater. Sci. Eng., 2018, A731: 403
37 Sun X L, Jie J C, Wang P F, et al. Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu-Cr alloys [J]. Mater. Sci. Eng., 2019, A740-741: 165
38 Wu Y K, Li Y, Lu J Y, et al. Effects of pre-deformation on precipitation behaviors and properties in Cu-Ni-Si-Cr alloy [J]. Mater. Sci. Eng., 2019, A742: 501
39 Wang W, Guo E Y, Chen Z N, et al. Correlation between microstructures and mechanical properties of cryorolled CuNiSi alloys with Cr and Zr alloying [J]. Mater. Charact., 2018, 144: 532
doi: 10.1016/j.matchar.2018.08.003
[1] SUN Laibo, HUANG Lujun, HUANG Ruisheng, XU Kai, WU Pengbo, LONG Weimin, JIANG Fengchun, FANG Naiwen. Progress in the Effect of Ultrasonic Impact Treatment on Microstructure Improvement and Strengthening Mechanism in Additive Manufacturing[J]. 金属学报, 2024, 60(3): 273-286.
[2] PENG Xiangyang, ZHANG Le, LI Congcong, HOU Shuo, LIU Di, ZHOU Jianming, LU Guangyao, JIANG Suihe. Synergetic Effects of Al and Cr on Enhancing Water Vapor Oxidation Resistance of Ultra-High Strength Steels for Nuclear Applications[J]. 金属学报, 2024, 60(3): 357-366.
[3] LIANG Enpu, XU Le, WANG Maoqiu, SHI Jie. Precipitation Behavior of NiAl and Cu in 40CrNi3MoV Steel and Its Effect on Mechanical Properties[J]. 金属学报, 2024, 60(2): 201-210.
[4] WANG Yong, ZHANG Weiwen, YANG Chao, WANG Zhi. Mechanical Properties and Deformation Behavior of a Nanostructured Aluminum Alloy Toughened by Titanium Alloy Base Three-Dimensional Lattice Structure[J]. 金属学报, 2024, 60(2): 247-260.
[5] LIU Chang, WU Ge, LU Jian. Nanostructural Multi-Principal-Element Alloys: Mechanical Properties and Toughening Mechanisms[J]. 金属学报, 2024, 60(1): 16-29.
[6] ZHENG Xiong, LAI Yuxiang, XIANG Xuemei, CHEN Jianghua. Impacts of Rare Earth Element La on Properties and Microstructure of AlMgSi Alloys[J]. 金属学报, 2024, 60(1): 107-116.
[7] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[8] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[10] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[11] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[12] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[13] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[14] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[15] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
No Suggested Reading articles found!