Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (8): 1013-1023    DOI: 10.11900/0412.1961.2021.00385
Research paper Current Issue | Archive | Adv Search |
Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature
ZHOU Hongwei1, GAO Jianbing2, SHEN Jiaming1, ZHAO Wei3, BAI Fengmei3(), HE Yizhu1
1.Key Laboratory of Green Preparation and Surface Technology of Advanced Metal Materials, Ministry of Education, School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co., Ltd., Taiyuan 030003, China
3.Anhui Key Laboratory of Metallurgical Engineering and Comprehensive Utilization of Resources, School of Metallergical Engineering, Anhui University of Technology, Ma'anshan 243032, China
Cite this article: 

ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature. Acta Metall Sin, 2022, 58(8): 1013-1023.

Download:  HTML  PDF(4354KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

C-HRA-5 steel is a new type of austenitic heat-resistant steel with excellent oxidation resistance and corrosion resistance, and high endurance strength at high temperatures. This steel can be used in superheaters and reheaters applied in 630-700oC advanced ultrasupercritical fossil-fired power plants, which is of great strategic significance to realize national energy savings and emission reduction targets. Detwinning often occurs in austenitic stainless steel when high-temperature fatigue and creep set in. However, the detwinning mechanism in C-HRA-5 steel during high-temperature fatigue and its influence on fatigue crack initiation and propagation remain unclear. Therefore, in this work, the detwinning behavior of C-HRA-5 steel under strain-controlled low-cycle fatigue (LCF) was studied at 700oC. The evolution of twin boundaries (TBs), detwinning mechanism, and influence of residual TBs on fatigue cracks were analyzed using SEM, EBSD, and TEM. After solution treatment at high temperatures, the fraction of low coincidence site lattice boundaries reached 69% in C-HRA-5 steel with dominant Σ3-type TBs. There was a remarkable detwinning effect under LCF loading. The degree of detwinning increased with increasing strain amplitude ranging from 0.3% to 0.7%. The detwinning mechanism was mainly related to the interactions at the dislocation TBs and precipitation of M23C6 at TBs. The plastic deformation of C-HRA-5 steel was dominated by planar slip under LCF loading, which resulted in dislocation gliding on particular planes. Therefore, numerous dislocation slip bands were formed. The collision of dislocation slip bands with TBs changed the coherent orientation of TBs and eventually led to detwinning. Meanwhile, the dislocation-TBs interaction induced the precipitation of M23C6 carbide at some TBs during LCF at 700oC, which strengthened the pinning of TBs on dislocations, thus accelerating the detwinning process. The residual TBs had higher strength than random grain boundaries and could inhibit the initiation and propagation of fatigue cracks.

Key words:  austenitic heat-resistant steel      low-cycle fatigue      detwinning      EBSD      fatigue crack     
Received:  07 September 2021     
ZTFLH:  TG142.73  
Fund: Anhui Natural Science Foundation(2008085ME127);Natural Science Foundation of Anhui Provincial Education Department(KJ2020A0252);Key Project of Science and Technology in Shanxi Province(20181101014)
About author:  BAI Fengmei, associate professor, Tel: (0555)2311570, E-mail: baifengmei@ahut.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00385     OR     https://www.ams.org.cn/EN/Y2022/V58/I8/1013

Fig.1  OM (a) and TEM (b) images of C-5 steel after water quenching at 1250oC for 30 min, SAED pattern of the twin in Fig.1b (c), and EDS analysis of Z phase marked by a box in Fig.1b (d) (TBs─twin boundaries, CTBs─coherent TBs, ITBs─incoherent TBs)
Fig.2  Inverse pole figures (IPFs) (a1-d1), band contrast (BC) maps (Red lines show the TBs) (a2-d2), and kernel average misorientation (KAM) maps (a3-d3) of the solution-treated (ST) C-5 steel (a1-a3) and under low-cycle fatigue (LCF) loading at 700oC with total strain amplitude εt = 0.3% (b1-b3), 0.5% (c1-c3), and 0.7% (d1-d3)
Fig.3  Variation of the length fraction of TBs with εt in C-5 steel under LCF loading at 700oC
Fig.4  IPFs (a1, b1), BC maps (Red lines show the TBs) (a2, b2), and KAM maps (a3, b3) of TBs fragmentation in the C-5 steel under LCF loading at 700oC with εt = 0.3% (a1-a3) and 0.7% (b1-b3) (RB─random boundary, p-TBs─pseudo-TBs)
Fig. 5  IPF (a1), BC map (Red lines show the TBs) (a2), KAM map (a3), and the contour lines of low angle grain boundary (LAGB, red lines) and high angle grain boundary (HAGB, black lines) (a4) of the C-5 steel under LCF loading at 700oC with εt = 0.7%, enlarged IPF and pole figures (PFs) of p-TBs in the selection area in Fig.5a1 (b), IPF and PFs of Σ3-type TBs with εt = 0.7% (c) and in ST C-5 steel (d)
Fig.6  TEM images of interaction between dislocation and TBs under LCF loading at 700oC with εt = 0.3% (a, b) and 0.7% (c)
Fig.7  SEM images of the precipitates at TBs in C-5 steel with εt = 0.5% at 700oC
(a) precipitates along the CTBs (b) precipitates along the ITBs
Fig.8  TEM images, SAED patterns, and EDS maps of the precipitates at TBs with εt = 0.5% at 700oC
(a) bright field TEM image
(b) dark field TEM image (c, f) SAED patterns of the precipitates in the circular area in Fig.8b (d, e) EDS element maps of C and Cr, respectively
Fig.9  Schematics of detwinning in C-5 steel under LCF at 700oC
(a) dislocations slip to TBs under fatigue loading
(b) dislocation increases to form slip bands that impact TBs, resulting in TBs fragmentation
(c) annihilation of partial TBs
(d) precipitation at TBs accelerates detwinning
Fig.10  IPF (a1-c1) and BC (Red lines show the TBs) (a2-c2) maps of the C-5 steel under LCF loading at 700oC with εt = 0.3% (a1, a2) and 0.7% (b1, b2), and enlarged images of the square area in Figs.10b1 and b2 (c1, c2)
1 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
2 Fang X D, Bao H S, Li Y, et al. Development of model heat resisting seamless tube C-HRA-5 for ultra-supercritical power plant boiler [J]. Iron Steel, 2020, 55(2): 119
方旭东, 包汉生, 李 阳 等. 超超临界锅炉用新型耐热无缝管C-HRA-5的开发 [J]. 钢铁, 2020, 55(2): 119
3 Zhu C Z, Yuan Y, Yin H F, et al. Research progress of austenitic heat resistant steel Sanicro 25 used in ultra supercritical unit [J]. Mater. Rev., 2017, 31(13): 78
朱传志, 袁 勇, 尹宏飞 等. 超超临界机组用Sanicro 25耐热钢研究进展 [J]. 材料导报, 2017, 31(13): 78
4 Wang L, Fang X D, Wang J, et al. The precipitation control of grain boundary M23C6 phases and the ductility improvement in aged 22Cr-25Ni-WCuNbN austenitic stainless steel by Co addition [J]. Mater. Lett., 2020, 264: 127348
doi: 10.1016/j.matlet.2020.127348
5 Hu C L, Xia S, Li H, et al. Effect of grain boundary network on the intergranular stress corrosion cracking of 304 stainless steel [J]. Acta Metall. Sin., 2011, 47: 939
胡长亮, 夏 爽, 李 慧 等. 晶界网络特征对304不锈钢晶间应力腐蚀开裂的影响 [J]. 金属学报, 2011, 47: 939
6 Trillo E A, Murr L E. TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels [J]. J. Mater. Sci., 1998, 33: 1263
doi: 10.1023/A:1004390029071
7 Shi F, Gao R H, Guan X J, et al. Application of grain boundary engineering to improve intergranular corrosion resistance in a Fe-Cr-Mn-Mo-N high-nitrogen and nickel-free austenitic stainless steel [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 789
doi: 10.1007/s40195-020-01000-8
8 Guan X J, Shi F, Jia Z P, et al. Grain boundary engineering of AL6XN super-austenitic stainless steel: distinctive effects of planar-slip dislocations and deformation twins [J]. Mater. Charact., 2020, 170: 110689
doi: 10.1016/j.matchar.2020.110689
9 Yang H, Xia S, Zhang Z L, et al. Improving the intergranular corrosion resistance of the weld heat-affected zone by grain boundary engineering in 304 austenitic stainless steel [J]. Acta Metall. Sin., 2015, 51: 333
杨 辉, 夏 爽, 张子龙 等. 晶界工程对于改善304奥氏体不锈钢焊接热影响区耐晶间腐蚀性能的影响 [J]. 金属学报, 2015, 51: 333
10 Ren S, Sun Z Y, Xu Z Z, et al. Effects of twins and precipitates at twin boundaries on Hall-Petch relation in high nitrogen stainless steel [J]. J. Mater. Res., 2018, 33: 1764
doi: 10.1557/jmr.2018.138
11 Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals [J]. Acta Mater., 1997, 45: 2633
doi: 10.1016/S1359-6454(96)00336-9
12 Zhang Z F, Shao C W, Wang B, et al. Tensile and fatigue properties and deformation mechanisms of twinning-induced plasticity steels [J]. Acta Metall. Sin., 2020, 56: 476
张哲峰, 邵琛玮, 王 斌 等. 孪生诱发塑性钢拉伸与疲劳性能及变形机制 [J]. 金属学报, 2020, 56: 476
doi: 10.11900/0412.1961.2019.00389
13 Lall A, Sarkar S, Ding R G, et al. Performance of Alloy 709 under creep-fatigue at various dwell times [J]. Mater. Sci. Eng., 2019, A761: 138028
14 Hong H U, Rho B S, Nam S W. Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel [J]. Mater. Sci. Eng., 2001, A318: 285
15 Sakaguchi N, Ohguchi Y, Shibayama T, et al. Surface cracking on Σ3, Σ9 CSL and random grain boundaries in helium implanted 316L austenitic stainless steel [J]. J. Nucl. Mater., 2013, 432: 23
doi: 10.1016/j.jnucmat.2012.08.019
16 Guan X J, Shi F, Ji H M, et al. A possibility to synchronously improve the high-temperature strength and ductility in face-centered cubic metals through grain boundary engineering [J]. Scr. Mater., 2020, 187: 216
doi: 10.1016/j.scriptamat.2020.06.026
17 Zhang X Y, Li D F, Guo S L, et al. Influence of annealing time on Σ3 boundary and Σ9 boundary evolutions in hastelloy C-276 Alloy [J]. Rare Met. Mater. Eng., 2016, 45: 2253
doi: 10.1016/S1875-5372(17)30012-7
18 Zheng H F, Shi M J, Mao Q, et al. Chromium concentration near grain boundaries with various characters in Inconel alloy 600 [J]. Chin. J. Mater. Res., 2020, 34: 511
郑合凤, 师梦杰, 毛 强 等. Inconel 600合金中不同类型晶界处铬的浓度 [J]. 材料研究学报, 2020, 34: 511
doi: 10.11901/1005.3093.2019.509
19 Li H Z, Jing H Y, Xu L Y, et al. Microstructure mechanism, cyclic deformation behavior of an Fe-Ni-Cr alloy considering non-masing behavior [J]. Int. J. Fatigue, 2019, 127: 537
doi: 10.1016/j.ijfatigue.2019.06.035
20 Sarkar A, Dash M K, Nagesha A, et al. EBSD based studies on various modes of cyclic deformation at 923 K in a type 316LN stainless steel [J]. Mater. Sci. Eng., 2018, A723: 229
21 Zhang P, Zhang Z J, Li L L, et al. Twin boundary: Stronger or weaker interface to resist fatigue cracking? [J]. Scr. Mater., 2012, 66: 854
doi: 10.1016/j.scriptamat.2012.01.028
22 Wang J, Li N, Anderoglu O, et al. Detwinning mechanisms for growth twins in face-centered cubic metals [J]. Acta Mater., 2010, 58: 2262
doi: 10.1016/j.actamat.2009.12.013
23 Bai J S, Lu Q H, Lu L. Detwinning behavior induced by local shear strain in nanotwinned Cu [J]. Acta Metall. Sin., 2016, 52: 491
白敬胜, 卢秋虹, 卢 磊. 纳米孪晶Cu中局部剪切应变诱导的退孪生行为 [J]. 金属学报, 2016, 52: 491
doi: 10.11900/0412.1961.2015.00503
24 Li Q, Song J, Liu G S, et al. Migration kinetics of twinning disconnections in nanotwinned Cu: An in situ HRTEM deformation study [J]. Scripta Mater., 2021, 194: 113621
doi: 10.1016/j.scriptamat.2020.11.006
25 Ni S, Liao X Z, Zhu Y T. Effect of severe plastic deformation on the structure and mechanical properties of bulk nanocrystalline metals [J]. Acta Metall. Sin., 2014, 50: 156
倪 颂, 廖晓舟, 朱运田. 剧烈塑性变形对块体纳米金属材料结构和力学性能的影响 [J]. 金属学报, 2014, 50: 156
26 He W J, Hu R. Portevin-Le Chatelier effect, twinning-detwinning and disordering in an aged Ni-Cr-Mo alloy during large plastic deformation [J]. Mater. Sci. Eng., 2021, A803: 140506
27 Zhou H W, Zhang H Y, Bai F M, et al. Planar dislocation structure during creep-fatigue interactions of TP347H heat-resistant austenitic steel at 600oC [J]. Mater. Sci. Eng., 2020, A779: 139141
28 Jang M H, Kang J Y, Jang J H, et al. Microstructure control to improve creep strength of alumina-forming austenitic heat-resistant steel by pre-strain [J]. Mater. Charact., 2018, 137: 1
doi: 10.1016/j.matchar.2018.01.005
29 Heczko M, Polák J, Kruml T. Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures [J]. Mater. Sci. Eng., 2017, A680: 168
30 Guo Q Y, Li Y M, Chen B, et al. Effect of high-temperature ageing on microstructure and creep properties of S31042 heat-resistant steel [J]. Acta Metall. Sin., 2021, 57: 82
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57: 82
doi: 10.11900/0412.1961.2020.00109
31 Zhou R Y, Zhu L H, Liu Y Y, et al. Precipitates and precipitation strengthening of sanicro 25 welded joint base metal crept at 973 K [J]. Steel Res. Int., 2017, 88: 1600414
doi: 10.1002/srin.201600414
32 Peng Z F, Ren W, Yang C, et al. Relationship between the evolution of phase parameters of grain boundary M23C6 and embrittlement of HR3C super-heater tubes in service [J]. Acta Metall. Sin., 2015, 51: 1325
彭志方, 任 文, 杨 超 等. HR3C钢运行过热器管的脆化与晶界M23C6相参量演化的关系 [J]. 金属学报, 2015, 51: 1325
33 Zhang Z, Hu Z F, Tu H Y, et al. Microstructure evolution in HR3C austenitic steel during long-term creep at 650oC [J]. Mater. Sci. Eng., 2017, A681: 74
34 Zhao W, Zhou H W, Fang L W, et al. Study on diversified carbide precipitation in high-strength low-alloy steel during tempering [J]. Steel Res. Int., 2021, 92: 2000723
doi: 10.1002/srin.202000723
35 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
doi: 10.1016/j.scriptamat.2011.06.010
36 Wen H Y, Zhao B B, Dong X P, et al. How big is the difference between precipitation at twin boundary and normal grain boundary in an alumina-forming austenitic steel during creep at 700oC? [J]. Mater. Lett., 2020, 274: 128019
doi: 10.1016/j.matlet.2020.128019
37 Calmunger M, Chai G C, Eriksson R, et al. Characterization of austenitic stainless steels deformed at elevated temperature [J]. Metall. Mater. Trans., 2017, 48A: 4525
38 Zhou H W, Bai F M, Yang L, et al. Mechanism of dynamic strain aging in a niobium-stabilized austenitic stainless steel [J]. Metall. Mater. Trans., 2018, 49A: 1202
39 Zhou H W, He Y Z, Cui M, et al. Dependence of dynamic strain ageing on strain amplitudes during the low-cycle fatigue of TP347H austenitic stainless steel at 550oC [J]. Int. J. Fatigue, 2013, 56: 1
doi: 10.1016/j.ijfatigue.2013.07.010
40 Song T, Wang Z W. Microstructure and properties of TP347HFG steel after high temperature service [J]. Heat Treat. Met., 2020, 45(4): 60
宋 涛, 王志武. 高温服役后TP347HFG钢的组织与性能 [J]. 金属热处理, 2020, 45(4): 60
[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[4] YANG Qinzheng, YANG Xiaoguang, HUANG Weiqing, SHI Duoqi. Propagation Behaviors of Small Cracks in Powder Metallurgy Nickel-Based Superalloy FGH4096[J]. 金属学报, 2022, 58(5): 683-694.
[5] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[6] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[7] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[8] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[9] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[10] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[11] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[12] WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel[J]. 金属学报, 2020, 56(2): 129-136.
[13] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[14] ZHANG Xiaochen, MENG Weiying, ZOU Defang, ZHOU Peng, SHI Huaitao. Effect of Pre-Cyclic Stress on Fatigue Crack Propagation Behavior of Key Structural Al Alloy Materials Used in High Speed Trains[J]. 金属学报, 2019, 55(10): 1243-1250.
[15] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
No Suggested Reading articles found!