|
|
Research on the Thermal Conductivity of Metals Based on First Principles |
CUI Yang1, LI Shouhang2, YING Tao1( ), BAO Hua2, ZENG Xiaoqin1 |
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2.University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles. Acta Metall Sin, 2021, 57(3): 375-384.
|
Abstract Metals are widely used for heat sink and thermal management products, and their thermal conductivities are critical in determining the cooling performance. An efficient method to calculate the thermal conductivity of pure metal is proposed based on the first principles. By introducing the constant relaxation time approximation, density functional theory (DFT) and maximum localized Wannier function (MLWFs) are used to solve the electronic thermal conductivity of metal materials, the calculation procedure of electronic thermal conductivity can be simplified. Regarding the phonon thermal conductivity calculation part, the combination of Slack equation, Birch-Murnaghan equation and Debye model is capable of improving the calculation efficiency. The electrical and thermal conductivities of Al, Mg and Zn in the temperature range of 300-700 K are calculated by the up-mentioned new method. The calculated thermal conductivity was consistent with the measured values, which confirmed the accuracy of the calculation method. The calculation results show that the electronic and phonon structures were essential parameters in thermal conduction of metals. With the increase of temperature, the ratio of the electronic thermal conductivity to the total thermal conductivity increased gradually.
|
Received: 09 July 2020
|
|
Fund: National Natural Science Foundation of China(51601111);Science and Technology Commission of Shanghai Municipality(18511109302);Joint Fund for Equipment Pre Research and Aerospace Science and Technology(6141B061304);Inner Mongolia Autonomous Region Major Project(ZDZX2016022) |
1 |
Watanabe H, Fukusumi M, Somekawa H, et al. Texture and mechanical properties of superplastically deformed magnesium alloy rod [J]. Mater. Sci. Eng., 2010, A527: 6350
|
2 |
Shaeri M R, Yaghoubi M. Thermal enhancement from heat sinks by using perforated fins [J]. Energy Conv. Manag., 2009, 50: 1264
|
3 |
Liang X B, Jia C C, Chu K, et al. Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings [J]. Rare Met., 2011, 30: 544
|
4 |
Wang R G. Research on the extrusion technology of magnesium alloy radiator [J]. China Met. Bull., 2009, (46): 42
|
|
王荣贵. 镁合金散热器挤压工艺研究 [J]. 中国金属通报, 2009, (46): 42
|
5 |
Klemens P G, Williams R K. Thermal conductivity of metals and alloys [J]. Int. Met. Rev., 1986, 31: 197
|
6 |
Liu J. First principal study of thermal conductivity of Cu/Fe/Al and their alloys [D]. Harbin: Harbin Institute of Technology, 2014
|
|
刘 金. 关于金属Cu、Fe、Al及其合金热导率的第一性原理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
|
7 |
Wen B, Feng X. Thermal conductivity of metal from first principles calculations and its application in aluminum [J]. J. Yanshan Univ., 2015, 39: 298
|
|
温 斌, 冯 幸. 金属热导率的第一性原理计算方法在铝中的应用 [J]. 燕山大学学报, 2015, 39: 298
|
8 |
Tong Z, Bao H. Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations [J]. Int. J. Heat Mass Trans., 2018, 117: 972
|
9 |
Ma H, Yang C L, Wang M S, et al. Effects of transport direction and carrier concentration on the thermoelectric properties of AgIn5Te8: A first-principles study [J]. Mater. Res. Bull., 2019, 113: 77
|
10 |
Den E V. Influence of the relaxation time approximation on first principle study of transport coefficients in thermoelectric material PbTe [D]. Louvain-la-Neuve: Université catholique de Louvain, 2016
|
11 |
Berman R. Thermal Conduction in Solids [M]. Oxford: Oxford University Press, 1976: 10
|
12 |
Tritt T M. Thermal Conductivity: Theory, Properties, and Applications [M]. New York: Kluwer Academic/Plenum Publishers, 2004: 21
|
13 |
Ziman J M. Electrons and Phonons [M]. Oxford: Oxford University Press, 1960: 12
|
14 |
Madsen G K H, Singh D J. BoltzTraP. A code for calculating band-structure dependent quantities [J]. Comput. Phys. Commun., 2006, 175: 67
|
15 |
Motta C, El-Mellouhi F, Sanvito S. Charge carrier mobility in hybrid halide perovskites [J]. Sci. Rep., 2015, 5: 12746
|
16 |
Souza I, Marzari N, Vanderbilt D. Maximally localized Wannier functions for entangled energy bands [J]. Phys. Rev., 2001, 65B: 035109
|
17 |
Nath P, Plata J J, Usanmaz D, et al. High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity [J]. Scr. Mater., 2017, 129: 88
|
18 |
Slack G A. The thermal conductivity of nonmetallic crystals [J]. Solid State Phys., 1979, 34: 1
|
19 |
Poirier J P. Introduction to the Physics of the Earth's Interior [M]. Cambridge: Cambridge University Press, 1991: 66
|
20 |
Toher C, Plata J J, Levy O, et al. High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model [J]. Phys. Rev., 2014, 90B: 174107
|
21 |
Birch F. Finite elastic strain of cubic crystals [J]. Phys. Rev., 1947, 71: 809
|
22 |
Murnaghan F D. The compressibility of media under extreme pressures [J]. Proc. Natl. Acad. Sci. USA, 1944, 30: 244
|
23 |
Wang Z, Wang S D, Obukhov S, et al. Thermoelectric transport properties of silicon: Toward an ab initio approach [J]. Phys. Rev., 2011, 83B: 205208
|
24 |
Deinzer G, Birner G, Strauch D. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon [J]. Phys. Rev., 2003, 67B: 144304
|
25 |
Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
|
26 |
Bai S J. Effect of Zr content on the structure and properties of commercial aluminum [D]. Shenyang: Northeastern University, 2015
|
|
白嗣俊. Zr含量对工业纯铝组织性能的影响 [D]. 沈阳: 东北大学, 2015
|
27 |
Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
|
28 |
Tyndall E P T, Hoyem A G. Resistivity of single crystal zinc [J]. Phys. Rev., 1931, 38: 820
|
29 |
Blakemore J S. Solid State Physics [M]. Cambridge: Cambridge University Press, 1985: 87
|
30 |
Wang Y, Liu Z K, Chen L Q. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations [J]. Acta Mater., 2004, 52: 2665
|
31 |
Yamagishi H, Fukuhara M, Chiba A. Determination of the mechanical properties of extruded pure magnesium during tension-tension low-cycle fatigue using ultrasonic testing [J]. Mater. Trans., 2010, 51: 2025
|
32 |
Weiss R J. The absolute X-ray scattering factor of magnesium [J]. Philos. Mag., 1967, 16: 141
|
33 |
Siebke W. Considerations on the bulk modulus of pure metals [J]. Phys. Status Solidi, 1981, 64: 577
|
34 |
Madelung O, White G K. Landolt-Bo¨rnstein—Group III Condensed Matter. Metals: Electronic Transport Phenomena•Thermal Conductivity of Pure Metals and Alloys[M]. Berlin: Springer, 1991: 12
|
35 |
Franz R, Wiedemann G. Ueber die Wärme-Leitungsfähigkeit der Metalle [J]. Ann. Phys., 1853, 165: 497
|
36 |
Ying T. Thermal behavior of pure magnesium and binary magnesium alloys [D]. Harbin: Harbin Institute of Technology, 2015
|
|
应 韬. 纯镁和二元镁合金的导热行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
37 |
Seitz F, Turnbull D. Solid State Physics [M]. New York: Academic Press, 1958: 255
|
38 |
Yang J, Morelli D T, Meisner G P, et al. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3 [J]. Phys. Rev., 2002, 65B: 094115
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|