Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (3): 375-384    DOI: 10.11900/0412.1961.2020.00250
Research paper Current Issue | Archive | Adv Search |
Research on the Thermal Conductivity of Metals Based on First Principles
CUI Yang1, LI Shouhang2, YING Tao1(), BAO Hua2, ZENG Xiaoqin1
1.School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
2.University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles. Acta Metall Sin, 2021, 57(3): 375-384.

Download:  HTML  PDF(1928KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metals are widely used for heat sink and thermal management products, and their thermal conductivities are critical in determining the cooling performance. An efficient method to calculate the thermal conductivity of pure metal is proposed based on the first principles. By introducing the constant relaxation time approximation, density functional theory (DFT) and maximum localized Wannier function (MLWFs) are used to solve the electronic thermal conductivity of metal materials, the calculation procedure of electronic thermal conductivity can be simplified. Regarding the phonon thermal conductivity calculation part, the combination of Slack equation, Birch-Murnaghan equation and Debye model is capable of improving the calculation efficiency. The electrical and thermal conductivities of Al, Mg and Zn in the temperature range of 300-700 K are calculated by the up-mentioned new method. The calculated thermal conductivity was consistent with the measured values, which confirmed the accuracy of the calculation method. The calculation results show that the electronic and phonon structures were essential parameters in thermal conduction of metals. With the increase of temperature, the ratio of the electronic thermal conductivity to the total thermal conductivity increased gradually.

Key words:  first-principle      pure metal      electrical conductivity      thermal conductivity     
Received:  09 July 2020     
ZTFLH:  TG146  
Fund: National Natural Science Foundation of China(51601111);Science and Technology Commission of Shanghai Municipality(18511109302);Joint Fund for Equipment Pre Research and Aerospace Science and Technology(6141B061304);Inner Mongolia Autonomous Region Major Project(ZDZX2016022)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00250     OR     https://www.ams.org.cn/EN/Y2021/V57/I3/375

Materialte?/?htph?/?h
C.R.TQuantum-EspressoVASPSlackPhonon-Boltzmann
Mg153114
Mg2Si2149128
Mg2Ca2138124
Table 1  Time comparisons of common calculation methods for electronic thermal conductivity (κe) and phonon thermal conductivity (κph)
Fig.1  Schematics of atomic structures of Al (a), Mg and Zn (b)
PhaseSpacegroupLattice constant / nmUnit cell volume / 103 nm3
CalculatedRef.[25]CalculatedRef.[25]
a0c0a0c0
AlFm3ˉm40.4-40.4-16.4716.47
MgP63/mmc32.152.231.852.246.6245.63
ZnP63/mmc25.744.326.746.325.4228.65
Table 2  Crystal structures and lattice constants (a0 and c0) of Al, Mg, and Zn
Fig.2  Comparisons of the electronic band structures based on density functional theory (DFT) and maximally localized Wannier functions (MLWFs) of Al (a), Mg (b), and Zn (c) (The open circles are the band structures calculated based on DFT, and the solid lines represent the band structures calculated by MLWFs)
Materialσ300?K / (MS·m-1)σ500?K / (MS·m-1)σ700?K / (MS·m-1)κe / (W·m-1·K-1)
Cal.Exp.Cal.Exp.Cal.Exp.300 K500 K700 K
Al32.0735.38[26]19.4819.66[26]14.0613.61[26]242.15247.39249.90
Mg18.8720.82[27]12.2211.57[27]8.998.01[27]143.54143.25143.27
Zn15.5816.69[28]9.219.59[28]6.526.73[28]110.07107.89111.72
Table 3  Calculated and measured[26-28] values of electrical conductivity (σ) of Al, Mg, Zn, and their electronic thermal conductivity
Fig.3  Comparisons of the relationships between calculated and measured[26~28] electrical conductivities of Al, Mg, and Zn with temperature (T)
Fig.4  Variations of electronic thermal conductivity with temperature for Al, Mg, and Zn
MaterialB0 / GPaθD / Kγκph / (W·m-1·K-1)
Cal.Exp.Cal.Exp.300 K500 K700 K
Al65.0968[30]492.21438[7]2.0220.2212.138.67
Mg33.2532[31]392.74344[32]1.798.565.133.67
Zn70.1667[33]314.51316[28]2.275.753.452.47
Table 4  Calculated and measured[7,28,30-33] values of thermodynamic parameters of Al, Mg, Zn, and their phonon thermal conductivity
Fig.5  Variations of phonon thermal conductivity with temperature for Al, Mg, and Zn
Fig.6  Comparisons of the relationships between calculated and measured[34] total thermal conductivities of Al, Mg, and Zn with temperature
Fig.7  Variations of Lorenz number with temperature for Al, Mg, and Zn
Fig.8  Comparisons of electron thermal conductivity and phonon thermal conductivity of Al, Mg, and Zn at different temperatures (κeAl, κeMg, and κeZn are the electronic thermal conductivities of Al, Mg, and Zn, respectively; κphAl, κphMg, and κphZn are the phonon thermal conductivities of Al, Mg, and Zn, respectively)
Fig.9  Ratios of electron thermal conductivity and phonon thermal conductivity to the total thermal conductivity for Al, Mg, and Zn at different temperatures (αeAl, αeMg, and αeZn are the ratios of electronic thermal conductivity to the total thermal conductivity for Al, Mg, and Zn, respectively; αphAl, αphMg, and αphZn are the ratios of phonon thermal conductivity to the total thermal conductivity for Al, Mg, and Zn, respectively)
1 Watanabe H, Fukusumi M, Somekawa H, et al. Texture and mechanical properties of superplastically deformed magnesium alloy rod [J]. Mater. Sci. Eng., 2010, A527: 6350
2 Shaeri M R, Yaghoubi M. Thermal enhancement from heat sinks by using perforated fins [J]. Energy Conv. Manag., 2009, 50: 1264
3 Liang X B, Jia C C, Chu K, et al. Predicted interfacial thermal conductance and thermal conductivity of diamond/Al composites with various interfacial coatings [J]. Rare Met., 2011, 30: 544
4 Wang R G. Research on the extrusion technology of magnesium alloy radiator [J]. China Met. Bull., 2009, (46): 42
王荣贵. 镁合金散热器挤压工艺研究 [J]. 中国金属通报, 2009, (46): 42
5 Klemens P G, Williams R K. Thermal conductivity of metals and alloys [J]. Int. Met. Rev., 1986, 31: 197
6 Liu J. First principal study of thermal conductivity of Cu/Fe/Al and their alloys [D]. Harbin: Harbin Institute of Technology, 2014
刘 金. 关于金属Cu、Fe、Al及其合金热导率的第一性原理研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
7 Wen B, Feng X. Thermal conductivity of metal from first principles calculations and its application in aluminum [J]. J. Yanshan Univ., 2015, 39: 298
温 斌, 冯 幸. 金属热导率的第一性原理计算方法在铝中的应用 [J]. 燕山大学学报, 2015, 39: 298
8 Tong Z, Bao H. Decompose the electron and phonon thermal transport of intermetallic compounds NiAl and Ni3Al by first-principles calculations [J]. Int. J. Heat Mass Trans., 2018, 117: 972
9 Ma H, Yang C L, Wang M S, et al. Effects of transport direction and carrier concentration on the thermoelectric properties of AgIn5Te8: A first-principles study [J]. Mater. Res. Bull., 2019, 113: 77
10 Den E V. Influence of the relaxation time approximation on first principle study of transport coefficients in thermoelectric material PbTe [D]. Louvain-la-Neuve: Université catholique de Louvain, 2016
11 Berman R. Thermal Conduction in Solids [M]. Oxford: Oxford University Press, 1976: 10
12 Tritt T M. Thermal Conductivity: Theory, Properties, and Applications [M]. New York: Kluwer Academic/Plenum Publishers, 2004: 21
13 Ziman J M. Electrons and Phonons [M]. Oxford: Oxford University Press, 1960: 12
14 Madsen G K H, Singh D J. BoltzTraP. A code for calculating band-structure dependent quantities [J]. Comput. Phys. Commun., 2006, 175: 67
15 Motta C, El-Mellouhi F, Sanvito S. Charge carrier mobility in hybrid halide perovskites [J]. Sci. Rep., 2015, 5: 12746
16 Souza I, Marzari N, Vanderbilt D. Maximally localized Wannier functions for entangled energy bands [J]. Phys. Rev., 2001, 65B: 035109
17 Nath P, Plata J J, Usanmaz D, et al. High throughput combinatorial method for fast and robust prediction of lattice thermal conductivity [J]. Scr. Mater., 2017, 129: 88
18 Slack G A. The thermal conductivity of nonmetallic crystals [J]. Solid State Phys., 1979, 34: 1
19 Poirier J P. Introduction to the Physics of the Earth's Interior [M]. Cambridge: Cambridge University Press, 1991: 66
20 Toher C, Plata J J, Levy O, et al. High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model [J]. Phys. Rev., 2014, 90B: 174107
21 Birch F. Finite elastic strain of cubic crystals [J]. Phys. Rev., 1947, 71: 809
22 Murnaghan F D. The compressibility of media under extreme pressures [J]. Proc. Natl. Acad. Sci. USA, 1944, 30: 244
23 Wang Z, Wang S D, Obukhov S, et al. Thermoelectric transport properties of silicon: Toward an ab initio approach [J]. Phys. Rev., 2011, 83B: 205208
24 Deinzer G, Birner G, Strauch D. Ab initio calculation of the linewidth of various phonon modes in germanium and silicon [J]. Phys. Rev., 2003, 67B: 144304
25 Curtarolo S, Setyawan W, Wang S D, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations [J]. Comput. Mater. Sci., 2012, 58: 227
26 Bai S J. Effect of Zr content on the structure and properties of commercial aluminum [D]. Shenyang: Northeastern University, 2015
白嗣俊. Zr含量对工业纯铝组织性能的影响 [D]. 沈阳: 东北大学, 2015
27 Tong X, You G Q, Ding Y H, et al. Effect of grain size on low-temperature electrical resistivity and thermal conductivity of pure magnesium [J]. Mater. Lett., 2018, 229: 261
28 Tyndall E P T, Hoyem A G. Resistivity of single crystal zinc [J]. Phys. Rev., 1931, 38: 820
29 Blakemore J S. Solid State Physics [M]. Cambridge: Cambridge University Press, 1985: 87
30 Wang Y, Liu Z K, Chen L Q. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations [J]. Acta Mater., 2004, 52: 2665
31 Yamagishi H, Fukuhara M, Chiba A. Determination of the mechanical properties of extruded pure magnesium during tension-tension low-cycle fatigue using ultrasonic testing [J]. Mater. Trans., 2010, 51: 2025
32 Weiss R J. The absolute X-ray scattering factor of magnesium [J]. Philos. Mag., 1967, 16: 141
33 Siebke W. Considerations on the bulk modulus of pure metals [J]. Phys. Status Solidi, 1981, 64: 577
34 Madelung O, White G K. Landolt-Bo¨rnstein—Group III Condensed Matter. Metals: Electronic Transport Phenomena•Thermal Conductivity of Pure Metals and Alloys[M]. Berlin: Springer, 1991: 12
35 Franz R, Wiedemann G. Ueber die Wärme-Leitungsfähigkeit der Metalle [J]. Ann. Phys., 1853, 165: 497
36 Ying T. Thermal behavior of pure magnesium and binary magnesium alloys [D]. Harbin: Harbin Institute of Technology, 2015
应 韬. 纯镁和二元镁合金的导热行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
37 Seitz F, Turnbull D. Solid State Physics [M]. New York: Academic Press, 1958: 255
38 Yang J, Morelli D T, Meisner G P, et al. Influence of electron-phonon interaction on the lattice thermal conductivity of Co1-xNixSb3 [J]. Phys. Rev., 2002, 65B: 094115
[1] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[2] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[3] REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film[J]. 金属学报, 2022, 58(7): 911-920.
[4] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[5] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[6] HOU Jiapeng, SUN Pengfei, WANG Qiang, ZHANG Zhenjun, ZHANG Zhefeng. Breaking the Trade-Off Relation Between Strength and Electrical Conductivity: Heterogeneous Grain Design[J]. 金属学报, 2022, 58(11): 1467-1477.
[7] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[8] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[9] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[10] MAO Fei, LU Hao, TANG Fawei, GUO Kai, LIU Dong, SONG Xiaoyan. First-Principle Calculation on the Effect of Mn and In on the Structural Stability and Magnetic Moment of SmCo7 Alloys[J]. 金属学报, 2021, 57(7): 948-958.
[11] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[12] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[13] GAI Yibing, TANG Fawei, HOU Chao, LU Hao, SONG Xiaoyan. First-Principles Calculation on the Influence of Alloying Elements on Interfacial Features of W-Cu System[J]. 金属学报, 2020, 56(7): 1036-1046.
[14] GAO Xiang, ZHANG Guikai, XIANG Xin, LUO Lizhu, WANG Xiaolin. Effects of Alloying Elements on the Adsorption of Oxygen on V(110) Surfaces: A First-Principles Study[J]. 金属学报, 2020, 56(6): 919-928.
[15] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
No Suggested Reading articles found!