|
|
|
| Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La |
LI Dou, XU Changjiang, LI Xuguang, LI Shuangming( ), ZHONG Hong |
| State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China |
|
Cite this article:
LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La. Acta Metall Sin, 2023, 59(2): 237-247.
|
|
|
Abstract During the use of fossil fuels, about two-thirds of the energy that is discharged into the environment in the form of waste heat are barely utilized and cause considerable environmental pollution and intense CO2 emission. Thermoelectric materials directly convert heat energy to electricity, thus, improving the utilization efficiency of fossil energy and reducing environmental pollution. Skutterudite CoSb3 has been widely studied as one of the materials for thermoelectric applications in the middle-temperature region. CoSb3-based skutterudites are narrow bandgap semiconductors with a high-electrical conductivity and Seebeck coefficient. Meanwhile, thermoelectric performance of bulk CoSb3 has been considerably improved via doping and design of nano structures. Herein, P-type CoSb3 was synthesized via melt-annealing-spark plasma sintering process. The effect of Ce-doping content on microstructure and thermoelectric properties of CoSb3 and the effect of La doping on decoupled thermoelectric performance were studied. Compared with Ce0.8Fe3CoSb12, the Seebeck coefficient of La0.1Ce0.8Fe3CoSb12 increased with temperature, electrical resistivity decreased from 25 μΩ·m to 15 μΩ·m at 300 K, and power factor simultaneously increased from 480 μW/(m·K2) to 642 μW/(m·K2) at 673 K. The La0.1Ce0.8Fe3CoSb12 thermal conductivity decreased with La or Ce doping to ~1 W/(m·K), and the corresponding thermoelectric figure of merit reached 0.45 at 723 K in the temperature range from 300 K to 723 K. Al-Ni coating was deposited on the sintered bulk skutterudite via magnetron sputtering method. It was demonstrated that the coating did not degrade the thermoelectric performance, while the coating elements were uniformly distributed across the sintered bulk La0.1Ce0.8Fe3CoSb12. The welding behavior of P-type La0.1Ce0.8Fe3CoSb12 was studied using a Ag40Cu60 solder and a Mo50Cu50 electrode sheet. The interface of this thermoelectric material was prone to cracking and pore formation, while the elements at the interface have not demonstrated remarkable diffusion. This indicates an efficiency of the interface bonding, which may be used in the fabrication technologies of thermoelectric devices.
|
|
Received: 19 May 2021
|
|
|
| Fund: National Natural Science Foundation of China(51774239) |
About author: LI Shuangming, professor, Tel: (029)88493264, E-mail: lsm@nwpu.edu.cn
|
| 1 |
Suarez F, Parekh D P, Ladd C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics[J]. Appl. Energy, 2017, 202: 736
doi: 10.1016/j.apenergy.2017.05.181
|
| 2 |
Siddique A R M, Rabari R, Mahmud S, et al. Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique[J]. Energy, 2016, 115: 1081
doi: 10.1016/j.energy.2016.09.087
|
| 3 |
Kuroki T, Kabeya K, Makino K, et al. Thermoelectric generation using waste heat in steel works[J]. J. Electron. Mater., 2014, 43: 2405
doi: 10.1007/s11664-014-3094-5
|
| 4 |
Sun H Y, Li S M, Feng S K, et al. Microstructure and phase selection in directional solidification of Co-Sb alloy[J]. Acta Metall. Sin., 2013, 49: 682
doi: 10.3724/SP.J.1037.2012.00735
|
|
孙洪元, 李双明, 冯松科 等. Co-Sb合金定向凝固组织与相选择[J]. 金属学报, 2013, 49: 682
doi: 10.3724/SP.J.1037.2012.00735
|
| 5 |
Yang B, Li S M, Li X, et al. Ultralow thermal conductivity and enhanced thermoelectric properties of SnTe based alloys prepared by melt spinning technique[J]. J. Alloys Compd., 2020, 837: 155568
doi: 10.1016/j.jallcom.2020.155568
|
| 6 |
Zheng Z H, Li F, Luo J T, et al. Thermoelectric properties and micro-structure characteristics of nano-sized CoSb3 thin films prefabricating by co-sputtering[J]. J. Alloys Compd., 2018, 732: 958
doi: 10.1016/j.jallcom.2017.10.207
|
| 7 |
Tang Y L, Chen S W, Snyder G J. Temperature dependent solubility of Yb in Yb-CoSb3 skutterudite and its effect on preparation, optimization and lifetime of thermoelectrics[J]. J. Materiomics, 2015, 1: 75
doi: 10.1016/j.jmat.2015.03.008
|
| 8 |
Li X H, Zhang Q, Kang Y L, et al. High pressure synthesized Ca-filled CoSb3 skutterudites with enhanced thermoelectric properties[J]. J. Alloys Compd., 2016, 677: 61
doi: 10.1016/j.jallcom.2016.03.239
|
| 9 |
Tang Y L, Gibbs Z M, Agapito L A, et al. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites[J]. Nat. Mater., 2015, 14: 1223
doi: 10.1038/nmat4430
|
| 10 |
Zhou Z X, Li J L, Fan Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance[J]. Scr. Mater., 2019, 162: 166
doi: 10.1016/j.scriptamat.2018.11.015
|
| 11 |
Zhou X Y, Wang G W, Guo L J, et al. Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance[J]. J. Mater. Chem., 2014, 2A: 20629
|
| 12 |
Tang Y L, Qiu Y T, Xi L L, et al. Phase diagram of In-Co-Sb system and thermoelectric properties of In-containing skutterudites[J]. Energy Environ. Sci., 2014, 7: 812
doi: 10.1039/C3EE43240H
|
| 13 |
Meng X F, Liu Z H, Cui B, et al. Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites[J]. Adv. Energy Mater., 2017, 7: 1602582
doi: 10.1002/aenm.201602582
|
| 14 |
Akasaka M, Iida T, Sakuragi G, et al. Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method[J]. J. Alloys Compd., 2005, 386: 228
doi: 10.1016/j.jallcom.2004.04.144
|
| 15 |
Furuyama S, Iida T, Matsui S, et al. Thermoelectric properties of undoped p-type CoSb3 prepared by vertical Bridgman crystal growth and spark plasma sintering[J]. J. Alloys Compd., 2006, 415: 251
doi: 10.1016/j.jallcom.2005.07.057
|
| 16 |
Yang L, Wu J S, Zhang L T. Study of grain growth and spark plasma sintering of a Skutterudite compound[J]. Acta Metall. Sin., 2003, 39: 785
|
|
杨 磊, 吴建生, 张澜庭. Skutterudite类化合物晶粒长大规律和放电等离子体烧结的研究[J]. 金属学报, 2003, 39: 785
|
| 17 |
Rogl G, Setman D, Schafler E, et al. High-pressure torsion, a new processing route for thermoelectrics of high ZTs by means of severe plastic deformation[J]. Acta Mater., 2012, 60: 2146
doi: 10.1016/j.actamat.2011.12.023
|
| 18 |
Ballikaya S, Uher C. Enhanced thermoelectric performance of optimized Ba, Yb filled and Fe substituted skutterudite compounds[J]. J. Alloys Compd., 2014, 585: 168
doi: 10.1016/j.jallcom.2013.09.124
|
| 19 |
Geng H Y, Ochi T, Suzuki S, et al. Thermoelectric properties of multifilled skutterudites with La as the main filler[J]. J. Electron. Mater., 2013, 42: 1999
doi: 10.1007/s11664-013-2501-7
|
| 20 |
Tan G J, Liu W, Wang S Y, et al. Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance[J]. J. Mater. Chem., 2013, 1A: 12657
|
| 21 |
Tan G J, Zheng Y, Tang X F. High thermoelectric performance of nonequilibrium synthesized CeFe4Sb12 composite with multi-scaled nanostructures[J]. Appl. Phys. Lett., 2013, 103: 183904
doi: 10.1063/1.4827555
|
| 22 |
Rogl G, Grytsiv A, Rogl P, et al. Nanostructuring of p- and n-type skutterudites reaching figures of merit of approximately 1.3 and 1.6, respectively[J]. Acta Mater., 2014, 76: 434
doi: 10.1016/j.actamat.2014.05.051
|
| 23 |
Bae S H, Lee K H, Choi S M. Effective role of filling fraction control in p-type CexFe3CoSb12 skutterudite thermoelectric materials[J]. Intermetallics, 2019, 105: 44
doi: 10.1016/j.intermet.2018.11.010
|
| 24 |
Park K H, Lee S, Seo W S, et al. Thermoelectric properties of La-filled CoSb3 skutterudites[J]. J. Korean Phys. Soc., 2014, 64: 1004
doi: 10.3938/jkps.64.1004
|
| 25 |
Liu K G, Dong X, Zhang J X. The effects of La on thermoelectric properties of LaxCo4Sb12 prepared by MA-SPS[J]. Mater. Chem. Phys., 2006, 96: 371
doi: 10.1016/j.matchemphys.2005.07.068
|
| 26 |
Ballikaya S, Wang G Y, Sun K, et al. Thermoelectric properties of triple-filled BaxYby In zCo4Sb12 Skutterudites[J]. J. Electron. Mater., 2011, 40: 570
doi: 10.1007/s11664-010-1454-3
|
| 27 |
Shi X, Zhang W, Chen L D, et al. Filling fraction limit for intrinsic voids in crystals: Doping in skutterudites[J]. Phys. Rev. Lett., 2005, 95: 185503
doi: 10.1103/PhysRevLett.95.185503
|
| 28 |
Wojciechowski K T, Zybala R, Mania R. High temperature CoSb3-Cu junctions[J]. Microelectron. Reliab., 2011, 51: 1198
doi: 10.1016/j.microrel.2011.03.033
|
| 29 |
Feng H B, Zhang L X, Zhang J L, et al. Metallization and diffusion bonding of CoSb3-based thermoelectric materials[J]. Materials, 2020, 13: 1130
doi: 10.3390/ma13051130
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|