|
|
Research Progress of High-Entropy Alloy Coatings |
CUI Hongzhi1,2( ), JIANG Di2 |
1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China 2. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China |
|
Cite this article:
CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings. Acta Metall Sin, 2022, 58(1): 17-27.
|
Abstract Preparing various types of coatings to strengthen the surface of materials is an effective technique to increase the materials' service performance. The qualities of the coatings can be considerably improved based on the service environment by altering their composition and microstructure without impacting the substrate's performance, thereby extending the equipment's service life. Recently, high- entropy alloys (HEAs) and their coatings have been the focus in materials science. The applications in surface engineering have developed rapidly owing to their outstanding strength, toughness, corrosion resistance, and wear resistance. By designing different HEA coatings and developing efficient preparation methods for surface engineering, HEA coatings are expected to be an ideal candidate for surface strengthening of key components suffering from wear, corrosion, and elevated temperature in an extreme environment. In this paper, the latest research results are detailed and the compositions, structures, properties, and wear and corrosion mechanisms of HEA coating from the characters viewpoint, classification, and preparation methods of HEA coatings are summarized. In addition, the issues that must be solved in the surface engineering field and the developing direction in the future were proposed.
|
Received: 07 May 2021
|
|
Fund: National Natural Science Foundation of China(51971121);Major-Special Science and Technology Projects in Shandong Province(2019JZZY010303) |
About author: CUI Hongzhi, professor, Tel: (0532)86057929, E-mail: cuihongzhi@ouc.edu.cn
|
1 |
Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Wang Y Q , Liu B , Yan K , et al . Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
|
3 |
Hsu C Y , Juan C C , Wang W R , et al . On the superior hot hardness and softening resistance of AlCoCr x FeMo0.5Ni high-entropy alloys [J]. Mater. Sci. Eng., 2011, A528: 3581
|
4 |
Song Q T , Xu Y K , Xu J . Dry-sliding wear behavior of (TiZrNb-Ta)90Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
|
|
宋芊汀, 徐映坤, 徐 坚 . (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为 [J]. 金属学报, 2020, 56: 1507
|
5 |
Yang H O , Shang X L , Wang L L , et al . Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
|
|
杨海欧, 尚旭亮, 王理林 等 . 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905
|
6 |
Li Z Z , Zhao S T , Ritchie R O , et al . Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
|
7 |
Cantor B , Chang I T H , Knight P , et al . Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
8 |
Wang W R , Wang W L , Wang S C , et al . Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
|
9 |
Singh S , Wanderka N , Murty B S , et al . Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy [J]. Acta Mater., 2011, 59: 182
|
10 |
Jiang H L , Hu Z F , Yuan X T , et al . Microstructure and mechanical properties of TiZrHfNbSc refractory high entropy alloy [J]. Rare Met. Mater. Eng., 2020, 49: 2820
|
|
江洪林, 胡志方, 袁学韬 等 . TiZrHfNbSc难熔高熵合金的组织和力学性能 [J]. 稀有金属材料与工程, 2020, 49: 2820
|
11 |
Qiu Y , Thomas S , Gibson M A , et al . Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
|
12 |
Turnbull D . Under what conditions can a glass be formed? [J]. Contem. Phys., 1969, 10: 473
|
13 |
Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
|
14 |
Cheng J L , Chen G , Gao P , et al . The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification [J]. Intermetallics, 2010, 18: 115
|
15 |
Shen J , Chen Q J , Sun J F , et al . Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
|
16 |
Wu C L , Zhang S , Zhang C H , et al . Phase evolution of FeCoCrAlCuNiMo x coatings by laser high-entropy alloying on stainless steels [J]. Acta Metall. Sin., 2016, 52: 797
|
|
吴臣亮, 张 松, 张春华 等 . 不锈钢表面FeCoCrAlCuNiMo x 激光高熵合金化层的相演变 [J]. 金属学报, 2016, 52: 797
|
17 |
Zhao K , Xia X X , Bai H Y , et al . Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature [J]. Appl. Phys. Lett., 2011, 98: 141913
|
18 |
Zhang S Y , Gao Y Y , Zhang Z B , et al . Research progress in corrosion resistance of high-entropy metallic glasses [J]. J. Mater. Eng., 2021, 49(1): 44
|
|
张舒研, 高洋洋, 张志彬 等 . 高熵非晶合金耐腐蚀性能研究进展 [J]. 材料工程, 2021, 49(1): 44
|
19 |
Sun H J , Man Q K , Dong Y Q , et al . Effect of Nb addition on the glass-forming ability, mechanical and soft-magnetic properties in (Co0.942Fe0.058)72 - x Nb x B22.4Si5.6 bulk glassy alloys [J]. J. Alloys Compd., 2010, 504: S31
|
20 |
Shen B L , Zhou Y J , Chang C T , et al . Effect of B to Si concentration ratio on glass-forming ability and soft-magnetic properties in (Co0.705Fe0.045B0.25 - x Si x )96Nb4 glassy alloys [J]. J. Appl. Phys., 2007, 101: 09N101
|
21 |
Amiya K , Inoue A . Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability [J]. Mater. Trans., 2006, 47: 1615
|
22 |
Müller F , Gorr B , Christ H J , et al . On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
|
23 |
Guo Y X , Liu Q B . MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding [J]. Intermetallics, 2018, 102: 78
|
24 |
Ye F X , Jiao Z P , Yan S , et al . Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al x CoCr-FeMnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
|
25 |
Xiang K , Chen L Y , Chai L J , et al . Microstructural characteristics and properties of CoCrFeNiNb x high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146214
|
26 |
Zhang M N , Zhou X L , Yu X N , et al . Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
|
27 |
Song P F , Jiang F L , Wang Y L , et al . Advances in the preparation of high entropy alloy coatings by laser cladding [J]. Surf. Technol., 2021, 50(1): 242
|
|
宋鹏芳, 姜芙林, 王玉玲 等 . 激光熔覆制备高熵合金涂层研究进展 [J]. 表面技术, 2021, 50(1): 242
|
28 |
Cheng J B , Liu D , Liang X B , et al . Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCr-CuFeNi high entropy alloy coatings [J]. Surf. Coat. Technol., 2015, 281: 109
|
29 |
Peng Y B , Zhang W , Li T C , et al . Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105044
|
30 |
Shu F Y , Liu S , Zhao H Y , et al . Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder [J]. J. Alloys Compd., 2018, 731: 662
|
31 |
Cheng J B , Sun B , Ge Y Y , et al . Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(B x Si1 - x )25 coating prepared by laser cladding [J]. Surf. Coat. Technol., 2020, 402: 126320
|
32 |
Cao S L , Liang J , Zhou J S , et al . Microstructure evolution and wear resistance of in-situ nanoparticles reinforcing Fe-based amorphous composite coatings [J]. Surf. Interface, 2020, 21: 100652
|
33 |
Li G , Gan Y Y , Liu C H , et al . Corrosion and wear resistance of Fe-based amorphous coatings [J]. Coatings, 2020, 10: 73
|
34 |
Huang G K , Qu L D , Lu Y Z , et al . Corrosion resistance improvement of 45 steel by Fe-based amorphous coating [J]. Vacuum, 2018, 153: 39
|
35 |
Hou X C , Du D , Wang K M , et al . Microstructure and wear resistance of Fe-Cr-Mo-Co-C-B amorphous composite coatings synthesized by laser cladding [J]. Metals, 2018, 8: 622
|
36 |
Zhu Y Y , Li Z G , Li R F , et al . High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
|
37 |
Zhu Y Y , Li Z G , Li R F , et al . Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
|
38 |
Zhu Y Y , Li Z G , Huang J , et al . Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings [J]. Appl. Surf. Sci., 2012, 261: 896
|
39 |
Li R F , Li Z G , Huang J , et al . Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process [J]. Appl. Surf. Sci., 2012, 258: 7956
|
40 |
Li R F , Li Z G , Huang J , et al . Effect of Ni-to-Fe ratio on structure and properties of Ni-Fe-B-Si-Nb coatings fabricated by laser processing [J]. Appl. Surf. Sci., 2011, 257: 3554
|
41 |
Shu F Y , Wu L , Zhao H Y , et al . Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating [J]. Mater. Lett., 2018, 211: 235
|
42 |
Shu F Y , Zhang B L , Liu T , et al . Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings [J]. Surf. Coat. Technol., 2019, 358: 667
|
43 |
Jin Y J , Li R F , Zheng Q C , et al . Structure and properties of laser-cladded Ni-based amorphous composite coatings [J]. Mater. Sci. Technol., 2016, 32: 1206
|
44 |
Wang H Z , Cheng Y H , Zhang X C , et al . Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings [J]. Mater. Chem. Phys., 2020, 250: 123091
|
45 |
Cheng J B , Sun B , Ge Y Y , et al . Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surf. Coat. Technol., 2020, 402: 126321
|
46 |
Shu F Y , Yang B , Dong S Y , et al . Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings [J]. Appl. Surf. Sci., 2018, 450: 538
|
47 |
Gostin P F , Gebert A , Schultz L . Comparison of the corrosion of bulk amorphous steel with conventional steel [J]. Corros. Sci., 2010, 52: 273
|
48 |
Yang L , Yu T B , Li M , et al . Microstructure and wear resistance of in-situ synthesized Ti(C, N) ceramic reinforced Fe-based coating by laser cladding [J]. Ceram. Int., 2018, 44: 22538
|
49 |
Sun S T , Fu H G , Ping X L , et al . Reinforcing behavior and microstructure evolution of NbC in laser cladded Ni45 coating [J]. Appl. Surf. Sci., 2018, 455: 160
|
50 |
Zhang C , Wu B Q , Wang Q T , et al . Microstructure and properties of FeCrNiCoMnB x high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
|
|
张 冲, 吴炳乾, 王乾廷 等 . 激光熔覆FeCrNiCoMnB x 高熵合金涂层的组织结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 2639
|
51 |
Zhang B S , Cheng J B , Xu B S . (CuCoCrFeNi)95B5 high-entropy alloy coatings prepared by plasma transferred arc cladding process [J]. Rare Met. Mater. Eng., 2014, 43: 1128
|
|
张保森, 程江波, 徐滨士 . 等离子熔覆(CuCoCrFeNi)95B5高熵合金涂层研究 [J]. 稀有金属材料与工程, 2014, 43: 1128
|
52 |
Wang J Y , Zhang B S , Yu Y Q , et al . Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding [J]. Surf. Coat. Technol., 2020, 384: 125337
|
53 |
Wei S Y , Peng W Y , Zhao W C , et al . Research on parameter optimization and microstructure and properties of CoCrFeMnNi high entropy alloy coating cladded by plasma arc welding [J]. Mater. Rev., 2020, 34: 17052
|
|
魏仕勇, 彭文屹, 赵文超 等 . 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究 [J]. 材料导报, 2020, 34: 17052
|
54 |
Yuan J J , Wang Q Z , Liu X Y , et al . Microstructures and high-temperature wear behavior of NiAl/WC-Fe x coatings on carbon steel by plasma cladding [J]. J. Alloys Compd., 2020, 842: 155850
|
55 |
Wu J , Zhang S D , Sun W H , et al . Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
|
56 |
Zhang S D , Wu J , Qi W B , et al . Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
|
57 |
Zhang S D , Zhang W L , Wang S G , et al . Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
|
58 |
Wu J , Cui J P , Zheng Q J , et al . Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions [J]. Electrochim. Acta, 2019, 319: 966
|
59 |
Xiao J K , Wu Y Q , Chen J , et al . Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAl x high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
|
60 |
Li W , Liu P , Liaw P K . Microstructures and properties of high-entropy alloy films and coatings: A review [J]. Mater. Res. Lett., 2018, 6: 199
|
61 |
Wu T , Duan J W , Chen X M , et al . Research progress of the effect of alloying element on laser cladding high-entropy alloy coatings [J]. Mater. Rev., 2020, 34(suppl.): 413
|
|
吴 韬, 段佳伟, 陈小明 等 . 合金元素对激光熔覆高熵合金涂层影响的研究进展 [J]. 材料导报, 2020, 34(): 413
|
62 |
Guo Y J , Li C G , Zeng M , et al . In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding [J]. Mater. Chem. Phys., 2020, 242: 122522
|
63 |
Jiang P F , Zhang C H , Zhang S , et al . Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying [J]. Mater. Chem. Phys., 2020, 255: 123571
|
64 |
Juan Y F , Li J , Jiang Y Q , et al . Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMo x laser-clad coatings [J]. Appl. Surf. Sci., 2019, 465: 700
|
65 |
Jia C T , Sha M H , Li S L , et al . Research progress on corrosion performance of high entropy alloy Coatings [J]. Corros. Sci. Prot. Technol., 2019, 31: 343
|
|
贾春堂, 沙明红, 李胜利 等 . 高熵合金涂层腐蚀性能研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 343
|
66 |
Wei L , Wang Z J , Wu Q J , et al . Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloy in NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
|
|
魏 琳, 王志军, 吴庆峰 等 . Mo元素及热处理对Ni2CrFeMo x 高熵合金在NaCl溶液中耐蚀性能的影响 [J]. 金属学报, 2019, 55: 840
|
67 |
Liu J , Liu H , Chen P J , et al . Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi x high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
|
68 |
Bao Y Y , Ji X L , Ji C C , et al . Corrosion and slurry erosion properties of FeCrNiCoCuAl x high-entropy alloy coatings prepared by laser cladding [J]. J. Mater. Eng., 2019, 47(11): 141
|
|
鲍亚运, 纪秀林, 姬翠翠 等 . 激光熔覆FeCrNiCoCuAl x 高熵合金涂层的耐腐蚀与抗冲蚀性能 [J]. 材料工程, 2019, 47(11): 141
|
69 |
Jiang Y Q , Li J , Juan Y F , et al . Evolution in microstructure and corrosion behavior of AlCoCr x FeNi high-entropy alloy coatings fabricated by laser cladding [J]. J. Alloys Compd., 2019, 775: 1
|
70 |
Qiu X W . Corrosion behavior of Al2CrFeCo x CuNiTi high-entropy alloy coating in alkaline solution and salt solution [J]. Results Phys., 2019, 12: 1737
|
71 |
Qiu X W , Liu C G . Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding [J]. J. Alloys Compd., 2013, 553: 216
|
72 |
Meghwal A , Anupam A , Murty B S , et al . Thermal spray high-entropy alloy coatings: A review [J]. J. Therm. Spray Technol., 2020, 29: 857
|
73 |
Wang W R , Qi W , Xie L , et al . Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying [J]. Materials, 2019, 12: 694
|
74 |
Vallimanalan A , Kumaresh Babu S P , Muthukumaran S , et al . Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating [J]. Mater. Today: Proc., 2020, 27: 2398
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|