Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (1): 17-27    DOI: 10.11900/0412.1961.2021.00193
Overview Current Issue | Archive | Adv Search |
Research Progress of High-Entropy Alloy Coatings
CUI Hongzhi1,2(), JIANG Di2
1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Cite this article: 

CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings. Acta Metall Sin, 2022, 58(1): 17-27.

Download:  HTML  PDF(1346KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Preparing various types of coatings to strengthen the surface of materials is an effective technique to increase the materials' service performance. The qualities of the coatings can be considerably improved based on the service environment by altering their composition and microstructure without impacting the substrate's performance, thereby extending the equipment's service life. Recently, high- entropy alloys (HEAs) and their coatings have been the focus in materials science. The applications in surface engineering have developed rapidly owing to their outstanding strength, toughness, corrosion resistance, and wear resistance. By designing different HEA coatings and developing efficient preparation methods for surface engineering, HEA coatings are expected to be an ideal candidate for surface strengthening of key components suffering from wear, corrosion, and elevated temperature in an extreme environment. In this paper, the latest research results are detailed and the compositions, structures, properties, and wear and corrosion mechanisms of HEA coating from the characters viewpoint, classification, and preparation methods of HEA coatings are summarized. In addition, the issues that must be solved in the surface engineering field and the developing direction in the future were proposed.

Key words:  high-entropy alloy (HEA) coating      wear      corrosion     
Received:  07 May 2021     
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(51971121);Major-Special Science and Technology Projects in Shandong Province(2019JZZY010303)
About author:  CUI Hongzhi, professor, Tel: (0532)86057929, E-mail: cuihongzhi@ouc.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00193     OR     https://www.ams.org.cn/EN/Y2022/V58/I1/17

Coating Process parameter Amorphous content Microhardness Ref.
(atomic fraction / %) Power Scanning rate Remelting (volume fraction) HV
kW mm·min-1
Fe60.3Cr18Mo17B2.5C2.2 4.0 2000 No ~50% 1085.6 [32]
Fe42Cr23Mo10C12B13 2.5 600 No 45% 900 [33]
Fe37.5Cr27.5C12B13Mo10 2.0/1.4 360 Yes > 50% - [34]
Fe45.8Mo24.2Cr14.7Co7.8C3.2B4.3 0.5 600 No 52.8% 1200 [35]
Fe34Co34B20Si5C3Nb4 1.9 3000 No ~90% 1245 [36]
Fe34Co34B20Si5C3Nb4 1.2 1020 No 87.6% 1283 [37]
Fe35.9Co35.9B19Si4.8Nb4.3 1.2 1020 No 80%-90% - [38]
Ni40.8Fe27.2B18Si10Nb4 0.7/3.5 8000 Yes 63% 1200 [39]
(Ni100 - x Fe x )62B18Si18Nb2 5.5/14 8000 Yes 36%-48% > 1200 [40]
Co34Cr29B14Fe8Ni8Si7 0.52 100 No 85.1% - [41]
Co34Cr29B14Fe8Ni8Si7 0.233 100 No 81.15% 1192.5 [42]
Ni39Fe26B18Si10Nb4C3 2.75 2400 No 76.7% 1187 [43]
Fe48.7Cr23.8Mo8.2B9.1C8.2Nb2 4.0 900 No ~50% 1024 [44]
(Fe25Co25Ni25(B0.7Si0.3)25)100 - x Nb x 2.5/3 1200 Yes A little > 800 [45]
Fe25Co25Ni25(B x Si1 - x )25 2.0/1.5 300 Yes - 839 [31]
Fe36Cr32Co14.5Ni10Si4.25B3.25 0.467 100 No 49% - [30]
Fe21.84Cr29Co20.16Ni8Si7B14 0.467 100 No 66.7% 850 [46]
Table 1  Coatings of amorphous/high-entropy amorphous alloys[30-46]
Fig.1  Microstructures of CoCrFeNiSiB coating by laser cladding with different powers[42]
(a) 233 W (b) 476 W (c) 583 W (d) 700 W
Fig.2  SEM images of sectional morphology of the (CoCrFeMnNi)85Ti15 high-entropy alloy (HEA) coating[52]
(a) microstructure in the bottom-middle region
(b) bottom equiaxed dendrites
(c) middle snowflake-like dendrites
Fig.3  SEM images of the polished surface morphology for the high-velocity air fuel (HVAF)-sprayed Fe49.7Cr18Mn1.9Mo7.4W1.6-B15.2C3.8Si2.4 amorphous coating[55]
(a) secondary electron image (b) back scatter electron image
(c) enlargement for the rectangle 1 in Fig.3b (d) enlargement for the rectangle 2 in Fig.3b
1 Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Wang Y Q , Liu B , Yan K , et al . Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
3 Hsu C Y , Juan C C , Wang W R , et al . On the superior hot hardness and softening resistance of AlCoCr x FeMo0.5Ni high-entropy alloys [J]. Mater. Sci. Eng., 2011, A528: 3581
4 Song Q T , Xu Y K , Xu J . Dry-sliding wear behavior of (TiZrNb-Ta)90Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
宋芊汀, 徐映坤, 徐 坚 . (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为 [J]. 金属学报, 2020, 56: 1507
5 Yang H O , Shang X L , Wang L L , et al . Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
杨海欧, 尚旭亮, 王理林 等 . 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905
6 Li Z Z , Zhao S T , Ritchie R O , et al . Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
7 Cantor B , Chang I T H , Knight P , et al . Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8 Wang W R , Wang W L , Wang S C , et al . Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
9 Singh S , Wanderka N , Murty B S , et al . Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy [J]. Acta Mater., 2011, 59: 182
10 Jiang H L , Hu Z F , Yuan X T , et al . Microstructure and mechanical properties of TiZrHfNbSc refractory high entropy alloy [J]. Rare Met. Mater. Eng., 2020, 49: 2820
江洪林, 胡志方, 袁学韬 等 . TiZrHfNbSc难熔高熵合金的组织和力学性能 [J]. 稀有金属材料与工程, 2020, 49: 2820
11 Qiu Y , Thomas S , Gibson M A , et al . Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
12 Turnbull D . Under what conditions can a glass be formed? [J]. Contem. Phys., 1969, 10: 473
13 Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
14 Cheng J L , Chen G , Gao P , et al . The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification [J]. Intermetallics, 2010, 18: 115
15 Shen J , Chen Q J , Sun J F , et al . Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
16 Wu C L , Zhang S , Zhang C H , et al . Phase evolution of FeCoCrAlCuNiMo x coatings by laser high-entropy alloying on stainless steels [J]. Acta Metall. Sin., 2016, 52: 797
吴臣亮, 张 松, 张春华 等 . 不锈钢表面FeCoCrAlCuNiMo x 激光高熵合金化层的相演变 [J]. 金属学报, 2016, 52: 797
17 Zhao K , Xia X X , Bai H Y , et al . Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature [J]. Appl. Phys. Lett., 2011, 98: 141913
18 Zhang S Y , Gao Y Y , Zhang Z B , et al . Research progress in corrosion resistance of high-entropy metallic glasses [J]. J. Mater. Eng., 2021, 49(1): 44
张舒研, 高洋洋, 张志彬 等 . 高熵非晶合金耐腐蚀性能研究进展 [J]. 材料工程, 2021, 49(1): 44
19 Sun H J , Man Q K , Dong Y Q , et al . Effect of Nb addition on the glass-forming ability, mechanical and soft-magnetic properties in (Co0.942Fe0.058)72 - x Nb x B22.4Si5.6 bulk glassy alloys [J]. J. Alloys Compd., 2010, 504: S31
20 Shen B L , Zhou Y J , Chang C T , et al . Effect of B to Si concentration ratio on glass-forming ability and soft-magnetic properties in (Co0.705Fe0.045B0.25 - x Si x )96Nb4 glassy alloys [J]. J. Appl. Phys., 2007, 101: 09N101
21 Amiya K , Inoue A . Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability [J]. Mater. Trans., 2006, 47: 1615
22 Müller F , Gorr B , Christ H J , et al . On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
23 Guo Y X , Liu Q B . MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding [J]. Intermetallics, 2018, 102: 78
24 Ye F X , Jiao Z P , Yan S , et al . Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al x CoCr-FeMnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
25 Xiang K , Chen L Y , Chai L J , et al . Microstructural characteristics and properties of CoCrFeNiNb x high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146214
26 Zhang M N , Zhou X L , Yu X N , et al . Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
27 Song P F , Jiang F L , Wang Y L , et al . Advances in the preparation of high entropy alloy coatings by laser cladding [J]. Surf. Technol., 2021, 50(1): 242
宋鹏芳, 姜芙林, 王玉玲 等 . 激光熔覆制备高熵合金涂层研究进展 [J]. 表面技术, 2021, 50(1): 242
28 Cheng J B , Liu D , Liang X B , et al . Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCr-CuFeNi high entropy alloy coatings [J]. Surf. Coat. Technol., 2015, 281: 109
29 Peng Y B , Zhang W , Li T C , et al . Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105044
30 Shu F Y , Liu S , Zhao H Y , et al . Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder [J]. J. Alloys Compd., 2018, 731: 662
31 Cheng J B , Sun B , Ge Y Y , et al . Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(B x Si1 - x )25 coating prepared by laser cladding [J]. Surf. Coat. Technol., 2020, 402: 126320
32 Cao S L , Liang J , Zhou J S , et al . Microstructure evolution and wear resistance of in-situ nanoparticles reinforcing Fe-based amorphous composite coatings [J]. Surf. Interface, 2020, 21: 100652
33 Li G , Gan Y Y , Liu C H , et al . Corrosion and wear resistance of Fe-based amorphous coatings [J]. Coatings, 2020, 10: 73
34 Huang G K , Qu L D , Lu Y Z , et al . Corrosion resistance improvement of 45 steel by Fe-based amorphous coating [J]. Vacuum, 2018, 153: 39
35 Hou X C , Du D , Wang K M , et al . Microstructure and wear resistance of Fe-Cr-Mo-Co-C-B amorphous composite coatings synthesized by laser cladding [J]. Metals, 2018, 8: 622
36 Zhu Y Y , Li Z G , Li R F , et al . High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
37 Zhu Y Y , Li Z G , Li R F , et al . Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
38 Zhu Y Y , Li Z G , Huang J , et al . Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings [J]. Appl. Surf. Sci., 2012, 261: 896
39 Li R F , Li Z G , Huang J , et al . Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process [J]. Appl. Surf. Sci., 2012, 258: 7956
40 Li R F , Li Z G , Huang J , et al . Effect of Ni-to-Fe ratio on structure and properties of Ni-Fe-B-Si-Nb coatings fabricated by laser processing [J]. Appl. Surf. Sci., 2011, 257: 3554
41 Shu F Y , Wu L , Zhao H Y , et al . Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating [J]. Mater. Lett., 2018, 211: 235
42 Shu F Y , Zhang B L , Liu T , et al . Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings [J]. Surf. Coat. Technol., 2019, 358: 667
43 Jin Y J , Li R F , Zheng Q C , et al . Structure and properties of laser-cladded Ni-based amorphous composite coatings [J]. Mater. Sci. Technol., 2016, 32: 1206
44 Wang H Z , Cheng Y H , Zhang X C , et al . Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings [J]. Mater. Chem. Phys., 2020, 250: 123091
45 Cheng J B , Sun B , Ge Y Y , et al . Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surf. Coat. Technol., 2020, 402: 126321
46 Shu F Y , Yang B , Dong S Y , et al . Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings [J]. Appl. Surf. Sci., 2018, 450: 538
47 Gostin P F , Gebert A , Schultz L . Comparison of the corrosion of bulk amorphous steel with conventional steel [J]. Corros. Sci., 2010, 52: 273
48 Yang L , Yu T B , Li M , et al . Microstructure and wear resistance of in-situ synthesized Ti(C, N) ceramic reinforced Fe-based coating by laser cladding [J]. Ceram. Int., 2018, 44: 22538
49 Sun S T , Fu H G , Ping X L , et al . Reinforcing behavior and microstructure evolution of NbC in laser cladded Ni45 coating [J]. Appl. Surf. Sci., 2018, 455: 160
50 Zhang C , Wu B Q , Wang Q T , et al . Microstructure and properties of FeCrNiCoMnB x high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
张 冲, 吴炳乾, 王乾廷 等 . 激光熔覆FeCrNiCoMnB x 高熵合金涂层的组织结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 2639
51 Zhang B S , Cheng J B , Xu B S . (CuCoCrFeNi)95B5 high-entropy alloy coatings prepared by plasma transferred arc cladding process [J]. Rare Met. Mater. Eng., 2014, 43: 1128
张保森, 程江波, 徐滨士 . 等离子熔覆(CuCoCrFeNi)95B5高熵合金涂层研究 [J]. 稀有金属材料与工程, 2014, 43: 1128
52 Wang J Y , Zhang B S , Yu Y Q , et al . Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding [J]. Surf. Coat. Technol., 2020, 384: 125337
53 Wei S Y , Peng W Y , Zhao W C , et al . Research on parameter optimization and microstructure and properties of CoCrFeMnNi high entropy alloy coating cladded by plasma arc welding [J]. Mater. Rev., 2020, 34: 17052
魏仕勇, 彭文屹, 赵文超 等 . 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究 [J]. 材料导报, 2020, 34: 17052
54 Yuan J J , Wang Q Z , Liu X Y , et al . Microstructures and high-temperature wear behavior of NiAl/WC-Fe x coatings on carbon steel by plasma cladding [J]. J. Alloys Compd., 2020, 842: 155850
55 Wu J , Zhang S D , Sun W H , et al . Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
56 Zhang S D , Wu J , Qi W B , et al . Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
57 Zhang S D , Zhang W L , Wang S G , et al . Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
58 Wu J , Cui J P , Zheng Q J , et al . Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions [J]. Electrochim. Acta, 2019, 319: 966
59 Xiao J K , Wu Y Q , Chen J , et al . Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAl x high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
60 Li W , Liu P , Liaw P K . Microstructures and properties of high-entropy alloy films and coatings: A review [J]. Mater. Res. Lett., 2018, 6: 199
61 Wu T , Duan J W , Chen X M , et al . Research progress of the effect of alloying element on laser cladding high-entropy alloy coatings [J]. Mater. Rev., 2020, 34(suppl.): 413
吴 韬, 段佳伟, 陈小明 等 . 合金元素对激光熔覆高熵合金涂层影响的研究进展 [J]. 材料导报, 2020, 34(): 413
62 Guo Y J , Li C G , Zeng M , et al . In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding [J]. Mater. Chem. Phys., 2020, 242: 122522
63 Jiang P F , Zhang C H , Zhang S , et al . Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying [J]. Mater. Chem. Phys., 2020, 255: 123571
64 Juan Y F , Li J , Jiang Y Q , et al . Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMo x laser-clad coatings [J]. Appl. Surf. Sci., 2019, 465: 700
65 Jia C T , Sha M H , Li S L , et al . Research progress on corrosion performance of high entropy alloy Coatings [J]. Corros. Sci. Prot. Technol., 2019, 31: 343
贾春堂, 沙明红, 李胜利 等 . 高熵合金涂层腐蚀性能研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 343
66 Wei L , Wang Z J , Wu Q J , et al . Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloy in NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
魏 琳, 王志军, 吴庆峰 等 . Mo元素及热处理对Ni2CrFeMo x 高熵合金在NaCl溶液中耐蚀性能的影响 [J]. 金属学报, 2019, 55: 840
67 Liu J , Liu H , Chen P J , et al . Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi x high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
68 Bao Y Y , Ji X L , Ji C C , et al . Corrosion and slurry erosion properties of FeCrNiCoCuAl x high-entropy alloy coatings prepared by laser cladding [J]. J. Mater. Eng., 2019, 47(11): 141
鲍亚运, 纪秀林, 姬翠翠 等 . 激光熔覆FeCrNiCoCuAl x 高熵合金涂层的耐腐蚀与抗冲蚀性能 [J]. 材料工程, 2019, 47(11): 141
69 Jiang Y Q , Li J , Juan Y F , et al . Evolution in microstructure and corrosion behavior of AlCoCr x FeNi high-entropy alloy coatings fabricated by laser cladding [J]. J. Alloys Compd., 2019, 775: 1
70 Qiu X W . Corrosion behavior of Al2CrFeCo x CuNiTi high-entropy alloy coating in alkaline solution and salt solution [J]. Results Phys., 2019, 12: 1737
71 Qiu X W , Liu C G . Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding [J]. J. Alloys Compd., 2013, 553: 216
72 Meghwal A , Anupam A , Murty B S , et al . Thermal spray high-entropy alloy coatings: A review [J]. J. Therm. Spray Technol., 2020, 29: 857
73 Wang W R , Qi W , Xie L , et al . Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying [J]. Materials, 2019, 12: 694
74 Vallimanalan A , Kumaresh Babu S P , Muthukumaran S , et al . Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating [J]. Mater. Today: Proc., 2020, 27: 2398
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[3] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[4] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[5] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[6] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[7] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[8] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[9] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[10] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[11] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[12] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[13] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[14] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[15] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
No Suggested Reading articles found!