1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China 2. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Cite this article:
CUI Hongzhi, JIANG Di. Research Progress of High-Entropy Alloy Coatings. Acta Metall Sin, 2022, 58(1): 17-27.
Preparing various types of coatings to strengthen the surface of materials is an effective technique to increase the materials' service performance. The qualities of the coatings can be considerably improved based on the service environment by altering their composition and microstructure without impacting the substrate's performance, thereby extending the equipment's service life. Recently, high- entropy alloys (HEAs) and their coatings have been the focus in materials science. The applications in surface engineering have developed rapidly owing to their outstanding strength, toughness, corrosion resistance, and wear resistance. By designing different HEA coatings and developing efficient preparation methods for surface engineering, HEA coatings are expected to be an ideal candidate for surface strengthening of key components suffering from wear, corrosion, and elevated temperature in an extreme environment. In this paper, the latest research results are detailed and the compositions, structures, properties, and wear and corrosion mechanisms of HEA coating from the characters viewpoint, classification, and preparation methods of HEA coatings are summarized. In addition, the issues that must be solved in the surface engineering field and the developing direction in the future were proposed.
Table 1 Coatings of amorphous/high-entropy amorphous alloys[30-46]
Fig.1 Microstructures of CoCrFeNiSiB coating by laser cladding with different powers[42] (a) 233 W (b) 476 W (c) 583 W (d) 700 W
Fig.2 SEM images of sectional morphology of the (CoCrFeMnNi)85Ti15 high-entropy alloy (HEA) coating[52] (a) microstructure in the bottom-middle region (b) bottom equiaxed dendrites (c) middle snowflake-like dendrites
Fig.3 SEM images of the polished surface morphology for the high-velocity air fuel (HVAF)-sprayed Fe49.7Cr18Mn1.9Mo7.4W1.6-B15.2C3.8Si2.4 amorphous coating[55] (a) secondary electron image (b) back scatter electron image (c) enlargement for the rectangle 1 in Fig.3b (d) enlargement for the rectangle 2 in Fig.3b
1
Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2
Wang Y Q , Liu B , Yan K , et al . Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
3
Hsu C Y , Juan C C , Wang W R , et al . On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys [J]. Mater. Sci. Eng., 2011, A528: 3581
4
Song Q T , Xu Y K , Xu J . Dry-sliding wear behavior of (TiZrNb-Ta)90Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
Yang H O , Shang X L , Wang L L , et al . Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
Li Z Z , Zhao S T , Ritchie R O , et al . Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
7
Cantor B , Chang I T H , Knight P , et al . Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8
Wang W R , Wang W L , Wang S C , et al . Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
9
Singh S , Wanderka N , Murty B S , et al . Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy [J]. Acta Mater., 2011, 59: 182
10
Jiang H L , Hu Z F , Yuan X T , et al . Microstructure and mechanical properties of TiZrHfNbSc refractory high entropy alloy [J]. Rare Met. Mater. Eng., 2020, 49: 2820
Qiu Y , Thomas S , Gibson M A , et al . Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
12
Turnbull D . Under what conditions can a glass be formed? [J]. Contem. Phys., 1969, 10: 473
13
Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
14
Cheng J L , Chen G , Gao P , et al . The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification [J]. Intermetallics, 2010, 18: 115
15
Shen J , Chen Q J , Sun J F , et al . Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
16
Wu C L , Zhang S , Zhang C H , et al . Phase evolution of FeCoCrAlCuNiMox coatings by laser high-entropy alloying on stainless steels [J]. Acta Metall. Sin., 2016, 52: 797
Zhao K , Xia X X , Bai H Y , et al . Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature [J]. Appl. Phys. Lett., 2011, 98: 141913
18
Zhang S Y , Gao Y Y , Zhang Z B , et al . Research progress in corrosion resistance of high-entropy metallic glasses [J]. J. Mater. Eng., 2021, 49(1): 44
Sun H J , Man Q K , Dong Y Q , et al . Effect of Nb addition on the glass-forming ability, mechanical and soft-magnetic properties in (Co0.942Fe0.058)72 - xNbxB22.4Si5.6 bulk glassy alloys [J]. J. Alloys Compd., 2010, 504: S31
20
Shen B L , Zhou Y J , Chang C T , et al . Effect of B to Si concentration ratio on glass-forming ability and soft-magnetic properties in (Co0.705Fe0.045B0.25 - xSix)96Nb4 glassy alloys [J]. J. Appl. Phys., 2007, 101: 09N101
21
Amiya K , Inoue A . Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability [J]. Mater. Trans., 2006, 47: 1615
22
Müller F , Gorr B , Christ H J , et al . On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
23
Guo Y X , Liu Q B . MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding [J]. Intermetallics, 2018, 102: 78
24
Ye F X , Jiao Z P , Yan S , et al . Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of AlxCoCr-FeMnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
25
Xiang K , Chen L Y , Chai L J , et al . Microstructural characteristics and properties of CoCrFeNiNbx high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146214
26
Zhang M N , Zhou X L , Yu X N , et al . Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
27
Song P F , Jiang F L , Wang Y L , et al . Advances in the preparation of high entropy alloy coatings by laser cladding [J]. Surf. Technol., 2021, 50(1): 242
Cheng J B , Liu D , Liang X B , et al . Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCr-CuFeNi high entropy alloy coatings [J]. Surf. Coat. Technol., 2015, 281: 109
29
Peng Y B , Zhang W , Li T C , et al . Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105044
30
Shu F Y , Liu S , Zhao H Y , et al . Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder [J]. J. Alloys Compd., 2018, 731: 662
31
Cheng J B , Sun B , Ge Y Y , et al . Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(BxSi1 - x)25 coating prepared by laser cladding [J]. Surf. Coat. Technol., 2020, 402: 126320
32
Cao S L , Liang J , Zhou J S , et al . Microstructure evolution and wear resistance of in-situ nanoparticles reinforcing Fe-based amorphous composite coatings [J]. Surf. Interface, 2020, 21: 100652
33
Li G , Gan Y Y , Liu C H , et al . Corrosion and wear resistance of Fe-based amorphous coatings [J]. Coatings, 2020, 10: 73
34
Huang G K , Qu L D , Lu Y Z , et al . Corrosion resistance improvement of 45 steel by Fe-based amorphous coating [J]. Vacuum, 2018, 153: 39
35
Hou X C , Du D , Wang K M , et al . Microstructure and wear resistance of Fe-Cr-Mo-Co-C-B amorphous composite coatings synthesized by laser cladding [J]. Metals, 2018, 8: 622
36
Zhu Y Y , Li Z G , Li R F , et al . High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
37
Zhu Y Y , Li Z G , Li R F , et al . Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
38
Zhu Y Y , Li Z G , Huang J , et al . Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings [J]. Appl. Surf. Sci., 2012, 261: 896
39
Li R F , Li Z G , Huang J , et al . Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process [J]. Appl. Surf. Sci., 2012, 258: 7956
40
Li R F , Li Z G , Huang J , et al . Effect of Ni-to-Fe ratio on structure and properties of Ni-Fe-B-Si-Nb coatings fabricated by laser processing [J]. Appl. Surf. Sci., 2011, 257: 3554
41
Shu F Y , Wu L , Zhao H Y , et al . Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating [J]. Mater. Lett., 2018, 211: 235
42
Shu F Y , Zhang B L , Liu T , et al . Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings [J]. Surf. Coat. Technol., 2019, 358: 667
43
Jin Y J , Li R F , Zheng Q C , et al . Structure and properties of laser-cladded Ni-based amorphous composite coatings [J]. Mater. Sci. Technol., 2016, 32: 1206
44
Wang H Z , Cheng Y H , Zhang X C , et al . Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings [J]. Mater. Chem. Phys., 2020, 250: 123091
45
Cheng J B , Sun B , Ge Y Y , et al . Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surf. Coat. Technol., 2020, 402: 126321
46
Shu F Y , Yang B , Dong S Y , et al . Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings [J]. Appl. Surf. Sci., 2018, 450: 538
47
Gostin P F , Gebert A , Schultz L . Comparison of the corrosion of bulk amorphous steel with conventional steel [J]. Corros. Sci., 2010, 52: 273
48
Yang L , Yu T B , Li M , et al . Microstructure and wear resistance of in-situ synthesized Ti(C, N) ceramic reinforced Fe-based coating by laser cladding [J]. Ceram. Int., 2018, 44: 22538
49
Sun S T , Fu H G , Ping X L , et al . Reinforcing behavior and microstructure evolution of NbC in laser cladded Ni45 coating [J]. Appl. Surf. Sci., 2018, 455: 160
50
Zhang C , Wu B Q , Wang Q T , et al . Microstructure and properties of FeCrNiCoMnBx high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
Zhang B S , Cheng J B , Xu B S . (CuCoCrFeNi)95B5 high-entropy alloy coatings prepared by plasma transferred arc cladding process [J]. Rare Met. Mater. Eng., 2014, 43: 1128
Wang J Y , Zhang B S , Yu Y Q , et al . Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding [J]. Surf. Coat. Technol., 2020, 384: 125337
53
Wei S Y , Peng W Y , Zhao W C , et al . Research on parameter optimization and microstructure and properties of CoCrFeMnNi high entropy alloy coating cladded by plasma arc welding [J]. Mater. Rev., 2020, 34: 17052
Yuan J J , Wang Q Z , Liu X Y , et al . Microstructures and high-temperature wear behavior of NiAl/WC-Fex coatings on carbon steel by plasma cladding [J]. J. Alloys Compd., 2020, 842: 155850
55
Wu J , Zhang S D , Sun W H , et al . Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
56
Zhang S D , Wu J , Qi W B , et al . Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
57
Zhang S D , Zhang W L , Wang S G , et al . Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
58
Wu J , Cui J P , Zheng Q J , et al . Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions [J]. Electrochim. Acta, 2019, 319: 966
59
Xiao J K , Wu Y Q , Chen J , et al . Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAlx high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
60
Li W , Liu P , Liaw P K . Microstructures and properties of high-entropy alloy films and coatings: A review [J]. Mater. Res. Lett., 2018, 6: 199
61
Wu T , Duan J W , Chen X M , et al . Research progress of the effect of alloying element on laser cladding high-entropy alloy coatings [J]. Mater. Rev., 2020, 34(suppl.): 413
Guo Y J , Li C G , Zeng M , et al . In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding [J]. Mater. Chem. Phys., 2020, 242: 122522
63
Jiang P F , Zhang C H , Zhang S , et al . Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying [J]. Mater. Chem. Phys., 2020, 255: 123571
64
Juan Y F , Li J , Jiang Y Q , et al . Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMox laser-clad coatings [J]. Appl. Surf. Sci., 2019, 465: 700
65
Jia C T , Sha M H , Li S L , et al . Research progress on corrosion performance of high entropy alloy Coatings [J]. Corros. Sci. Prot. Technol., 2019, 31: 343
Wei L , Wang Z J , Wu Q J , et al . Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMox high-entropy alloy in NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
Liu J , Liu H , Chen P J , et al . Microstructural characterization and corrosion behaviour of AlCoCrFeNiTix high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
68
Bao Y Y , Ji X L , Ji C C , et al . Corrosion and slurry erosion properties of FeCrNiCoCuAlx high-entropy alloy coatings prepared by laser cladding [J]. J. Mater. Eng., 2019, 47(11): 141
Jiang Y Q , Li J , Juan Y F , et al . Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding [J]. J. Alloys Compd., 2019, 775: 1
70
Qiu X W . Corrosion behavior of Al2CrFeCoxCuNiTi high-entropy alloy coating in alkaline solution and salt solution [J]. Results Phys., 2019, 12: 1737
71
Qiu X W , Liu C G . Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding [J]. J. Alloys Compd., 2013, 553: 216
72
Meghwal A , Anupam A , Murty B S , et al . Thermal spray high-entropy alloy coatings: A review [J]. J. Therm. Spray Technol., 2020, 29: 857
73
Wang W R , Qi W , Xie L , et al . Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying [J]. Materials, 2019, 12: 694
74
Vallimanalan A , Kumaresh Babu S P , Muthukumaran S , et al . Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating [J]. Mater. Today: Proc., 2020, 27: 2398