|
|
Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy |
HAN Luhui1, KE Haibo2( ), ZHANG Pei1, SANG Ge1, HUANG Huogen1( ) |
1.Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China 2.Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
Cite this article:
HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy. Acta Metall Sin, 2022, 58(10): 1316-1324.
|
Abstract Due to their high strength and excellent anticorrosive properties, U-based amorphous alloys are quite promising for applications in nuclear-related fields. However, they face the challenge of crystallization due to high temperatures during some applications. Currently, focus on the crystallization mechanism of such materials is limited; thus, further investigation is required. Herein, using differential scanning calorimetry, both nonisothermal and isothermal crystallization kinetics of typical amorphous U60Fe27.5Al12.5 alloy were investigated. This alloy was further analyzed using different theoretical methods. The alloy exhibited the glass transition activation energy of slightly more than 270 kJ/mol and the melt fragility value of about 22, indicating that it is a strong metallic glass material. Based on the first exothermal crystallization peak, this glassy alloy is believed to possess the crystallization activation energy of 205-275 kJ/mol within nonisothermal method and 280-390 kJ/mol within the other method. The former value is much lower than the latter, which is consistent with the results of the conventional amorphous alloys. This general trend is mainly because crystallization can be activated more easily by a continuous increase in temperature. The kinetic factor of the alloy was in the ranges of 3-4 and 2.5-3 under the nonisothermal and isothermal conditions, respectively, demonstrating that the devitrification of the noncrystalline U-Fe-Al alloy greatly depends on the nucleation process, which is prone to occur during a rise in temperature.
|
Received: 25 February 2021
|
|
Fund: Joint Funds of National Natural Science Foundation of China(U2030208);National Natural Science Foundation of China(51731002);Strengthening Fundamental Foundation Project(JCJQ-20190415);Fund of Science and Technology on Surface Physics and Chemistry Laboratory(6142A02200205) |
About author: KE Haibo, professor, Tel: (0769)89136229, E-mail: kehaibo@sslab.org.cn;HUANG Huogen, professor, Tel: (0816)3626968, E-mail: hhgeng2002@sina.com
|
1 |
Ortega L H, Blamer B, Stern K M, et al. Thermal conductivity of uranium metal and uranium-zirconium alloys fabricated via powder metallurgy [J]. J. Nucl. Mater., 2020, 531: 151982
doi: 10.1016/j.jnucmat.2019.151982
|
2 |
Li H B, Ding Q, Gu Y J, et al. The initial oxidation behavior of uranium and uranium-titanium alloys in standing storage [J]. Corros. Sci., 2020, 176: 108879
doi: 10.1016/j.corsci.2020.108879
|
3 |
Zubelewicz A, Addessio F L, Cady C M. A constitutive model for a uranium-niobium alloy [J]. J. Appl. Phys., 2006, 100: 013523
|
4 |
Dash S, Ghoshal K, Kutty T R G. Thermodynamic investigations of uranium-rich binary and ternary alloys [J]. J. Therm. Anal. Calorim., 2013, 112: 179
doi: 10.1007/s10973-012-2801-9
|
5 |
Maslennikov A, Bessonov A, Peretroukhine V, et al. Uranium and U-Zr and U-Ru alloy corrosion rates in the transpassive state [J]. J. Alloys Compd., 2007, 444-445: 345
doi: 10.1016/j.jallcom.2007.06.078
|
6 |
Banos A, Harker N J, Scott T B. A review of uranium corrosion by hydrogen and the formation of uranium hydride [J]. Corros. Sci., 2018, 136: 129
doi: 10.1016/j.corsci.2018.03.002
|
7 |
Long Z, Liu K Z, Bai B, et al. Corrosion resistance of modified layer on uranium formed by plasma immersion ion implantation [J]. J. Alloys Compd., 2010, 491: 252
doi: 10.1016/j.jallcom.2009.09.164
|
8 |
Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta. Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
|
|
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
|
9 |
Huang H G, Zhang P G, Zhang P, et al. Comparison of glass forming ability between U-Co and U-Fe base systems [J]. Acta. Metall. Sin., 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
|
|
黄火根, 张鹏国, 张 培 等. U-Co与U-Fe基础体系非晶形成能力的比较 [J]. 金属学报, 2020, 56: 849
doi: 10.11900/0412.1961.2019.00349
|
10 |
Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
|
11 |
Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta. Metall. Sin., 2015, 51: 623
|
|
黄火根, 王英敏, 陈 亮 等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
|
12 |
Zhang P, Pu Z, Zhang P G, et al. U-Fe-Al metallic glasses with superior glass forming ability and corrosion resistance [J]. J. Mater. Res. Technol., 2020, 9: 6209
doi: 10.1016/j.jmrt.2020.03.039
|
13 |
Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys., 2013, 33: 177
|
|
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
|
14 |
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
|
15 |
Ozawa T. A new method of analyzing thermogravimetric data [J]. Bull. Chem. Soc. Japan, 1965, 38(11): 1881
doi: 10.1246/bcsj.38.1881
|
16 |
Böhmer R, Ngai K L, Angell C A, et al. Nonexponential relaxations in strong and fragile glass formers [J]. J. Chem. Phys., 1999, 99: 4201
doi: 10.1063/1.466117
|
17 |
Wang T, Yang Y Q, Li J B, et al. Thermodynamics and structural relaxation in Ce-based bulk metallic glass-forming liquids [J]. J. Alloys Compd., 2011, 509: 4569
doi: 10.1016/j.jallcom.2011.01.106
|
18 |
Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
|
19 |
Liu L, Wu Z F, Zhang J. Crystallization kinetics of Zr55Cu30Al10Ni5 bulk amorphous alloy [J]. J. Alloys Compd., 2002, 339: 90
doi: 10.1016/S0925-8388(01)01977-6
|
20 |
Qiao J C, Pelletier J M. Crystallization kinetics in Cu46Zr45Al7Y2 bulk metallic glass by differential scanning calorimetry (DSC) [J]. J. Non-Cryst. Solids, 2011, 357: 2590
doi: 10.1016/j.jnoncrysol.2010.12.071
|
21 |
Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses [J]. Thermochim. Acta, 1995, 267: 61
doi: 10.1016/0040-6031(95)02466-2
|
22 |
Lu W, Yan B, Huang W H. Complex primary crystallization kinetics of amorphous Finemet alloy [J]. J. Non-Cryst. Solids, 2005, 351: 3320
doi: 10.1016/j.jnoncrysol.2005.08.018
|
23 |
Zhuang Y X, Wang W H, Zhang Y, et al. Crystallization kinetics and glass transition of Zr41Ti14Cu12.5Ni10 - x Fe x Be22.5 bulk metallic glasses [J]. Appl. Phys. Lett., 1999, 75: 2392
doi: 10.1063/1.125024
|
24 |
Venkataraman S, Rozhkova E, Eckert J, et al. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: The effect of particulate reinforcement [J]. Intermetallics, 2005, 13: 833
doi: 10.1016/j.intermet.2005.01.010
|
25 |
Yuan Z Z, Chen X D, Wang B X, et al. Kinetics study on non-isothermal crystallization of the metallic Co43Fe20Ta5.5B31.5 glass [J]. J. Alloys Compd., 2006, 407: 163
doi: 10.1016/j.jallcom.2005.06.022
|
26 |
Kozmidis-Petrović A F, Lukić S R, Štrbac G R. Calculation of non-isothermal crystallization parameters for the Cu15(As2Se3)85 metal-chalcogenide glass [J]. J. Non-Cryst. Solids, 2010, 356: 2151
doi: 10.1016/j.jnoncrysol.2010.08.026
|
27 |
Zhuang Y X, Duan T F, Shi H Y. Calorimetric study of non-isothermal crystallization kinetics of Zr60Cu20Al10Ni10 bulk metallic glass [J]. J. Alloys Compd., 2011, 509: 9019
doi: 10.1016/j.jallcom.2011.06.112
|
28 |
Hu L, Ye F. Crystallization kinetics of Ca65Mg15Zn20 bulk metallic glass [J]. J. Alloys Compd., 2013, 557: 160
doi: 10.1016/j.jallcom.2012.12.158
|
29 |
Wu J L, Pan Y, Huang J D, et al. Non-isothermal crystallization kinetics and glass-forming ability of Cu-Zr-Ti-In bulk metallic glasses [J]. Thermochim. Acta, 2013, 552: 15
doi: 10.1016/j.tca.2012.11.012
|
30 |
Cui J, Li J S, Wang J, et al. Crystallization kinetics of Cu38Zr46Ag8Al8 bulk metallic glass in different heating conditions [J]. J. Non-Cryst. Solids, 2014, 404: 7
doi: 10.1016/j.jnoncrysol.2014.07.029
|
31 |
Gong P, Yao K F, Ding H Y. Crystallization kinetics of TiZrHfCuNiBe high entropy bulk metallic glass [J]. Mater. Lett., 2015, 156: 146
doi: 10.1016/j.matlet.2015.05.018
|
32 |
Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|