Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (12): 1667-1680    DOI: 10.11900/0412.1961.2020.00104
Current Issue | Archive | Adv Search |
Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process
DU Zijie1,2, LI Wenyuan2(), LIU Jianrong2, SUO Hongbo3, WANG Qingjiang2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Qingdao JointX Intelligent Manufacturing Limited, Qingdao 266109, China
Cite this article: 

DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process. Acta Metall Sin, 2020, 56(12): 1667-1680.

Download:  HTML  PDF(7538KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TC4-DT alloy is developed based on TC4 alloy, with medium strength and high damage-tolerance, showing a great promise to be widely used in aerospace field. However, the traditional method to fabricate large and complicated parts has the problems of hot working difficulty, long processing cycle, low "buy-to-fly" ratio and high-cost. Additive manufacturing (AM) technology is a good alternative and has been used to manufacture titanium parts since year 2006. Compared to other AM technologies, cold metal transfer mode wire and arc additive manufacturing (CMT WAAM), as a kind of gas metal arc welding (GMAW) technology, has several advantages like simple structure, good spatial accessibility and high efficiency. In this study, a TC4-DT deposit was fabricated by CMT WAAM method. The macrostructure and microstructure, texture, and tensile properties in the overlapping zone and ordinary deposition zone were investigated and compared. The bottom of the ordinary deposition zone consisted of columnar and equiaxed prior β grains, and in higher zone the coarse equiaxed prior β grains were in the majority. The microstructure of the ordinary deposition zone was mainly characterized by basketweave α phase platelets. Microstructure of both sides of the overlapping line was characterized by a mixture of fine basketweave, lamellar and coarse basketweave α phase due to temperature gradient. Transformed α texture from {001}β//Z silk texture existed in different zones, and the texture of overlapping zone was complicated due to the complexity of heat dissipation conditions, including transformed α texture and other complicated texture. EBSD results showed that there was a strong <0001>α //X texture at the overlapping line, resulting in low Schmid factors for both prismatic slip and basal slip at the overlapping line, hindering the slip of dislocation. Combined with the Hall-Petch relationship, it was concluded that the prior β grain boundary and the overlapping line were main factors affecting the uniformity of mechanical properties. The average effective dislocation slip distances in different zones had the following relationship: overlapping zone<bottom of the ordinary deposition zone<top of the ordinary deposition zone, leading to different yield strengths in different zones of the ordinary deposition zone.

Key words:  CMT WAAM      TC4-DT titanium alloy      uniformity of microstructure      texture      uniformity of mechanical property     
Received:  01 April 2020     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00104     OR     https://www.ams.org.cn/EN/Y2020/V56/I12/1667

Fig.1  Schematics of the deposition path (unit: mm) (a) and the deposition sample (b)
Fig.2  The schematic of tensile sample (unit: mm) (a), sampling position (b) and the observation areas of D sample after 1% plastic deformation (c) (D: overlapping zone; 1#: top of the ordinary deposition zone; 2#: bottom of the ordinary deposition zone)
Fig.3  The macrostructures of the TC4-DT sample deposited by cold metal transfer (CMT)
Fig.4  Microstructures of the top (a) and bottom (b) of the ordinary deposition zone of the TC4-DT sample deposited by CMT
Fig.5  Microstructures of the overlapping zone of the TC4-DT sample deposited by CMT
Fig.6  Inverse pole figures in X-direction (IPF-X) of different zones of the TC4-DT sample deposited by CMT
SampleRp0.2 / MPaAverage / MPaRm / MPaAverage / MPaA / %Average / %
Overlapping zone, D78678585485111.511.0
78484810.5
Top of ordinary deposition zone, 1#72472983483715.014.8
73484014.5
Bottom of ordinary deposition zone, 2#77176287786410.510.5
75385110.5
Table 1  Room temperature tensile properties of different zones
Fig.7  True stress-stain curves of different tensile samples
SampleFitting curver2
D-1S=1106.34ε0.0740.9608
D-2S=1044.34ε0.0520.9754
D-averageS=1075.34ε0.063
1#-1S=1151.01ε0.0980.9869
1#-2S=1092.49ε0.0730.9700
1#-averageS=1121.75ε0.086
2#-1S=1153.92ε0.0780.9782
2#-2S=1147.38ε0.0880.9791
2#-averageS=1150.65ε0.083
Table 2  Fitting results of Hollomon equation
Fig.8  Fracture morphologies of samples D (a, b), 1# (c, d) and 2# (e, f) with different magnifications
Fig.9  Macrostructures (a, c, e) and SEM images of fracture side (b, d, f) of samples D (a, b), 1# (c, d) and 2# (e, f)
Fig.10  Height maps of different zones on sample D after 1% plastic deformation (Insets show the prior β grain boundaries)
Fig.11  Slip characteristics (a, d, g), the relative EBSD maps (b, e, h) and IPF-X (c, f, i) for transformed α phase of different areas on sample D after 1% plastic deformation (μ—Schmid factor)
Fig.12  Organization division and the fastest cooling directions of overlapping zone (Tββ fransformation temperature)
Fig.13  {100} pole figures of prior β phase of different areas on sample D after 1% plastic deformation
Fig.14  The schematics of slip length of overlapping zone (a), top of the ordinary deposition zone (b) and bottom of the ordinary deposition zone (c) of the TC4-DT sample deposited by CMT
[1] Li L, Sun J K, Meng X J. Application state and prospects for titanium alloys [J]. Titan. Ind. Prog., 2004, 21(5): 19
(李 梁, 孙健科, 孟祥军. 钛合金的应用现状及发展前景 [J]. 钛工业进展, 2004, 21(5): 19)
[2] Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Its Application [M]. Beijing: Chemical Industry Press, 2005: 1
(张喜燕, 赵永庆, 白晨光. 钛合金及应用 [M]. 北京: 化学工业出版社, 2005: 1)
[3] Feng B X, Mao X N, Yang G J, et al. Residual stress field and thermal relaxation behavior of shot-peened TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2009, A512: 105
[4] Lu W, Shi Y W, Lei Y P, et al. Effect of electron beam welding on the microstructures and mechanical properties of thick TC4-DT alloy [J]. Mater. Des., 2012, 34: 509
doi: 10.1016/j.matdes.2011.09.004
[5] Peng X N, Guo H Z, Wang T, et al. Effects of β treatments on microstructures and mechanical properties of TC4-DT titanium alloy [J]. Mater. Sci. Eng., 2012, A533: 55
[6] Liu W. Study on microstructure and tensile properties of TC4-DT titanium alloy forgings [J]. Heavy Cast. Forg., 2018, (3): 38
(刘 卫. TC4-DT钛合金锻件组织与拉伸性能研究 [J]. 大型铸锻件, 2018, (3): 38)
[7] Hong Q, Han D, Guo P, et al. Flow properties and microstructure evolution of TC4-DT alloy at high temperature [J]. Hot Working Technol., 2017, 46(7): 189
(洪 权, 韩 栋, 郭 萍等. TC4-DT合金的高温流变特性及组织演变 [J]. 热加工工艺, 2017, 46(7): 189)
[8] Gong S L, Suo H B, Li H X. Development and application of metal additive manufacturing technology [J]. Aeronaut. Manuf. Technol., 2013, (13): 66
(巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用 [J]. 航空制造技术, 2013, (13): 66)
[9] Liu S Y, Shin Y C. Additive manufacturing of Ti6Al4V alloy: A review [J]. Mater. Des., 2019, 164: 107552
doi: 10.1016/j.matdes.2018.107552
[10] Li D C, Tian X Y, Wang Y X, et al. Developments of additive manufacturing technology [J]. Electromach. Mould, 2012, (suppl.1): 20
(李涤尘, 田小永, 王永信等. 增材制造技术的发展 [J]. 电加工与模具, 2012, (增刊1): 20)
[11] Rodrigues T A, Duarte V, Miranda R M, et al. Current status and perspectives on wire and arc additive manufacturing (WAAM) [J]. Materials, 2019, 12: 1121
doi: 10.3390/ma12071121
[12] Pan Z X, Ding D H, Wu B T, et al. Arc welding processes for additive manufacturing: A review [A]. Transactions on Intelligent Welding Manufacturing [C]. Singapore: Springer, 2018: 3
[13] Williams S W, Martina F, Addison A C, et al. Wire+arc additive manufacturing [J]. Mater. Sci. Technol., 2016, 32: 641
doi: 10.1179/1743284715Y.0000000073
[14] Tian C L, Chen J L, Dong P, et al. Current state and future development of the wire arc additive manufacture technology abroad [J]. Aerosp. Manuf. Technol., 2015, (2): 57
(田彩兰, 陈济轮, 董 鹏等. 国外电弧增材制造技术的研究现状及展望 [J]. 航天制造技术, 2015, (2): 57)
[15] Wang F D, Williams S, Rush M. Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy [J]. Int. J. Adv. Manuf. Technol., 2011, 57: 597
doi: 10.1007/s00170-011-3299-1
[16] Wang B. Study on wire and arc additive manufacturing forming process of TC4 titanium alloy [D]. Shenyang: Shenyang Aerospace University, 2018
(王 斌. TC4钛合金电弧熔丝沉积成形工艺研究 [D]. 沈阳: 沈阳航空航天大学, 2018)
[17] Baufeld B, Brandl E, van der Biest O. Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition [J]. J. Mater. Process. Technol., 2011, 211: 1146
doi: 10.1016/j.jmatprotec.2011.01.018
[18] Lin J J, Lv Y H, Liu Y X, et al. Microstructural evolution and mechanical property of Ti-6Al-4V wall deposited by continuous plasma arc additive manufacturing without post heat treatment [J]. J. Mech. Behav. Biomed. Mater., 2017, 69: 19
doi: 10.1016/j.jmbbm.2016.12.015 pmid: 28033532
[19] He Z. Effect of ultrasonic impact on the properties of arc additive manufacturing of titanium alloy [D]. Wuhan: Huazhong University of Science and Technology, 2016
(何 智. 超声冲击电弧增材制造钛合金零件的组织性能研究 [D]. 武汉: 华中科技大学, 2016)
[20] Ji L, Lu J P, Tang S Y, et al. Research on mechanisms and controlling methods of macro defects in TC4 alloy fabricated by wire additive manufacturing [J]. Materials, 2018, 11: 1104
doi: 10.3390/ma11071104
[21] Xu F D, Dhokia V, Colegrove P, et al. Realisation of a multi-sensor framework for process monitoring of the wire arc additive manufacturing in producing Ti-6Al-4V parts [J]. Int. J. Comput. Integr. Manuf., 2018, 31: 785
doi: 10.1080/0951192X.2018.1466395
[22] Park S C, Choi B K. Tool-path planning for direction-parallel area milling [J]. Comput. Aided Des., 2000, 32: 17
doi: 10.1016/S0010-4485(99)00080-9
[23] Rajan V T, Srinivasan V, Tarabanis K A. The optimal zigzag direction for filling a two-dimensional region [J]. Rapid Prototyping J., 2001, 7(5): 231
doi: 10.1108/13552540110410431
[24] Hu Z Q, Qin X P, Li Y F, et al. Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing [J]. J. Intell. Manuf., 2020, 31: 1133
doi: 10.1007/s10845-019-01501-z
[25] Zhang H T, Feng J C, Hu L L. Energy input and metal transfer behavior of CMT welding process [J]. Mater. Sci. Technol., 2012, 20(2): 128
(张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为 [J]. 材料科学与工艺, 2012, 20(2): 128)
[26] Liu Z. The microstructure and tensile behavior of TC4 titanium alloy produced via electron beam rapid manufacturing [D]. Hefei: University of Science and Technology of China, 2019
(刘 征. 电子束熔丝成形TC4合金的组织和拉伸力学行为研究 [D]. 合肥: 中国科学技术大学, 2019)
[27] Suo H B. Microstructure and mechanical properties of Ti6Al4V produced by electron beam rapid manufacturing [D]. Wuhan: Huazhong University of Science and Technology, 2014
(锁红波. 电子束快速成形TC4钛合金显微组织及力学性能研究 [D]. 武汉: 华中科技大学, 2014)
[28] Du Z J, Li W Y, Liu J R, et al. Microstructure and its CET prediction of TC4-DT by CMT mode wire and arc additive manufacturing [J]. Chin. J. Mater. Res., 2020, 34: 518
(杜子杰, 李文渊, 刘建荣等. CMT成型TC4-DT合金组织及形成机理的CET模型预测 [J]. 材料研究学报, 2020, 34: 518)
[29] Zhao Z B. The crystallographic orientation of α phase in Ti60 alloy [D]. Beijing: University of Chinese Academy of Sciences, 2014
(赵子博. Ti60合金中α相的晶体取向研究 [D]. 北京: 中国科学院大学, 2014)
[30] de Formanoir C, Michotte S, Rigo O, et al. Electron beam melted Ti-6Al-4V: Microstructure, texture and mechanical behavior of the as-built and heat-treated material [J]. Mater. Sci. Eng., 2016, A652: 105
[31] Paradkar A G, Kamat S V, Gogia A K, et al. On the validity of Hall-Petch equation for single-phase β Ti-Al-Nb alloys undergoing stress-induced martensitic transformation [J]. Mater. Sci. Eng., 2009, A520: 168
[32] Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49: 3565
doi: 10.1016/S1359-6454(01)00236-1
[33] Bridier F, Villechaise P, Mendez J. Analysis of the different slip systems activated by tension in a α/β titanium alloy in relation with local crystallographic orientation [J]. Acta Mater., 2005, 53: 555
doi: 10.1016/j.actamat.2004.09.040
[34] Li H, Boehlert C J, Bieler T R, et al. Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V (wt.%) at 296 K and 728 K [J]. Philos. Mag., 2015, 95: 691
doi: 10.1080/14786435.2014.1001459
[35] Pilchak A L, Williams R E A, Williams J C. Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V [J]. Metall. Mater. Trans., 2010, 41A: 106
[36] Yu Y N. Fundamentals of Material Science [M]. 2nd Ed., Beijing: Higher Education Press, 2012: 350
(余永宁. 材料科学基础 [M]. 第2版. 北京: 高等教育出版社, 2012: 350)
[37] Hu G X, Cai X. Fundamentals of Material Science [M]. Shanghai: Shanghai Jiao Tong University Press, 2000: 172
(胡赓祥, 蔡 珣. 材料科学基础 [M]. 上海: 上海交通大学出版社, 2000: 172)
[38] Pan J S, Tong J M, Tian M B. Fundamentals of Material Science [M]. Beijing: Tsinghua University Press, 2011: 1
(潘金生, 仝健民, 田民波. 材料科学基础 [M]. 北京: 清华大学出版社, 2011: 1)
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[12] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[13] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[14] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[15] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
No Suggested Reading articles found!